基于STR912FW44X6的测量系统方案
eeskill 2021-10-19

利用条码技术进行精密测量的典型仪器是1990年Leica公司开发成功的数字水准仪NA2000,这种光电一体化的新型仪器,具有测量速度快、精度高、操作简单、读数直观,能自动计算高差、高程,自动记录数据,计算机数据处理和容易实现基准测量一体化等诸多特点。国内目前对该技术的研究较少,本文提出了一种基于ST半导体公司的32位高性能处理器STR912FW44X6的测量系统方案。

系统结构

系统工作原理如下:带有精密位置信息的条码图像通过光学系统,成像在CMOS图像传感器光敏面上,STR912FW44X6处理器对SVI公司的LIS-1024图像传感器进行自动曝光控制后,采集图像信息,经过算法处理,获得条码带有的位置信息。

当系统进行高速图像采集时,STR912FW44X6处理器将采集信号通过以太网接口送往计算机测量系统,进行最终的数据处理。

硬件设计

图像采集模块

图像采集模块主要由线阵CMOS图像传感器(LIS-1024)、运算放大器(TLV2221IDBVR)组成。视频信号经运算放大器放大后传送到STR912FW44X6主处理器进行A/D转换,转变为数字图像信号。

STR912FW44X6主处理器直接控制图像采集时序,图像采集模块本身并没有自动曝光功能,对环境光强的变化需要由主芯片对采集到的图像信号进行分析,然后通过对图像传感器的控制来实现自适应环境光强的功能。

主机板模块

系统主芯片是基于ARM966E-S核的高性能嵌入式芯片STR912FW44X6,运算速度达96MIPS,支持单周期DSP指令。芯片的系统外围包括时钟、复位、电源管理、向量中断控制器(VIC)、内部PLL、RTC、定时器、9个可编程DMA通道和多达80个GPIO。还有8通道10位ADC、3相电机控制器、PWM输出和多种通讯接口。

芯片内建双组Flash,可利用芯片上任意通讯口实现在系统编程功能。主芯片外接1 片64MB内存(芯片ST-M25P64)来扩展存储空间。

主机板外围接口

主要有CMOS图像传感器接口、RS-232接口、I2C接口和10/100M以太网接口。

CMOS图像传感器的接口主要实现对图象传感器的自动曝光控制和图象采集;RS-232接口(芯片SP3222)实现程序下载,与上位机通讯,接受上位机指令控制;I2C接口实现主芯片与键盘和液晶显示模块之间的通讯;10/100M以太网接口(芯片STE100P)配合计算机软件实现高速图像采集。

键盘与液晶显示屏模块

键盘模块选用ATMega48芯片实现键盘控制和I2C通讯,以及LCD屏模块I2C通讯。

软件设计

系统软件的流程如图所示。

软件功能

软件的功能主要是图像的条码定位算法,包括以下内容:

条码检测:从条码信号中提取各种特征参量,通常包括各条码边缘位置、中心、宽度的检测,码字划分。 根据标尺已知参数确定物像比,同时求出视距,计算基准位置相对于目标码位置的相对距离,按物像比放大到真实尺寸d2(精度结果)。 解码:相当于信源编码的逆过程,计算目标码字的码字位置d1(粗读结果)。标尺最终读数ds为粗读与精读结果之和:ds=d1+d2。

本系统采用了等间隔周期性位移条码,利用条码等间距结构,通过提取与条码等间距对应的特征谱线计算物像比,进而得到条码的等效宽度序列,最后根据条码周期性实现解码。

软件架构

整个软件采用嵌入式操作系统mCOS-II作为主要载体,软件主要分五个线程,系统上电启动后五个线程并行工作。五个线程分别是:串口控制、I2C接口控制、以太网接口控制、系统菜单控制、数据采集和解码。

测试结果

为了考察系统的性能,设计了与精度为0.004mm的螺旋测微计比对实验。利用螺旋测微计测量条码标尺实际移动的数值,每次条码标尺移动0.500mm,总共测量11次数据,得到11个不同位置处的条码值,计算差值进行比对。测量结果如表1所示。

从测量数据看出,系统测量数据的偏差值在±0.0185mm以内,说明系统的测量达到了一定的精度。

对系统分辨率作了初步测试。保持条码和测量系统的相对位置不变,连续测量10次数据,如表2所示。

测量数据平均值为130.5049mm,系统测量算术偏差在±0.3mm内,即现有系统的分辨率约为0.3mm。采用系统误差标定,软件算法改进等措施后,有望进一步提高系统的测量精度。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • 工业
  • 安防
  • 航空
  • CAN
  • 风电风机故障诊断远程无线管理方案

    风电行业作为可再生能源领域中最具前景的发电方式之一,在全球范围内分布广泛。但是,在风机发生故障时,却总是措手不及。本文将提供可行的方案,能够为解决故障带来便利。   风电行业现状概述 随着“碳中和”和“碳达峰”的热度疯涨,新能源行业势必崛起。风

    04-27
  • 如何将CAN总线升级成CAN FD?

    如何快速升级到CAN FD? 小致百科课堂 · ▴ 点击视频,关注查看更多 ▴ 21世纪初,CAN总线技术迎来了CAN FD时代,数据传输的速率不断提高的同时,极大地缩短了数据传输,尤其是程序下载的时间。那么如何才能将手头的CAN总线升级成CAN FD呢? 致远电子为您提供3

    04-22
  • 一张表看电机的分类

    据说尼古拉·特斯拉(Nikola Tesla)于1888年发明了交流电机。从那时起,由于各种元素创新,例如电机的组成材料(磁铁、钢板等),半导体元器件的材料、部件技术和控制技术等,使电机有了长足发展。例如,在1900年代初期开发的输出功率为5马力的感应电机,在2

    04-21
  • 解析电机的旋转动作和发电作用

    电机的旋转原理 作为电机基础知识,我们将介绍电机原理相关的内容。 关于电流、磁场和力 首先,为了便于后续电机原理说明,我们来回顾一下有关电流、磁场和力的基本定律/法则。虽然有一种怀旧的感觉,但如果平时不常使用磁性元器件,就很容易忘记这些知识。

    04-14
  • 运动控制T型曲线速度规划的matlab、 C语言实现

    ★ 本文介绍了运动控制中常用的梯形速度曲线规划的原理和程序实现,最后给出了测试结果; ” 1 前言 2 理论分析 3 matlab 实现 4 测试结果 5 C语言实现 6 总结 1 前言 在伺服系统以及控制系统的加减速动作中,为了让速度更加平滑,可以引入T型速度曲线规划(T

    03-31
  • CAN总线和RS485总线应用概述

    CAN总线和RS485总线的定义 CAN是控制器局域网络(Controller Area Network, CAN)的简称,是由研发和生产汽车电子产品著称的德国BOSCH公司开发了的,并最终成为国际标准(ISO11898)。是国际上应用最广泛的现场总线之一。在北美和西欧,CAN总线协议已经成为

    03-30
  • 传感器这么多种,你都知道怎么工作的吗

    布料张力测量及控制原理 ▼ 直滑式电位器控制气缸活塞行程 ▼ 压阻式传感器测量液位的工作原理 ▼ MQN型气敏电阻结构及测量电路 ▼ 气泡式水平仪的工作原理 ▼ 扩散硅式压力传感器 ▼ 应变加速度感应器 ▼ 称重式料位计 ▼ 电子皮带秤重示意图 ▼ 电子吊车秤

    03-26
  • 一文看懂I2C(FPGA实测I2C波形)

    据非官方统计,90%电子行业的公众号都介绍过3种串行通讯协议:UART、SPI和I2C。这3种串行协议也是电子开发行业最常用的协议。前面介绍了 及其 , 。本篇文章介绍I2C通讯协议及其FPGA实测波形。 文末有【I2C官方标准文档下载方法】。 有哪些内容 I2C是什么 5种

    03-25
  • 红电线,黄电线,绿电线,各种颜色电线都代表什么?

    1、依导线颜色标志电路 黑色——装置和设备的内部布线。 棕色——直流电路的正极。 红色——三相电路的C相; 半导体三极管的集电极; 半导体二极管、整流二极管或可控硅管的阴极。 黄色——三相电路的A相; 半导体三极管的基极; 可控硅管和双向可控硅管的控

    03-26
  • 总线隔离后接地出现通讯异常该如何改善?

    在已为大家介绍隔离后接地的ESD作用机理,那么面对总线隔离后由于接地而出现的通讯异常问题该如何改善,本文将为大家介绍对应的改善措施以及电路作用详解。    前言 为保证总线网络的通讯稳定性,通讯接口通常会做隔离,隔离的主要目的: 安规考虑:保护设备

    03-19
  • 常用的电气电路图集

    1 单相照明双路互备自投供电电路 2 双路三相电源自投电路 3 茶炉水加热自动控制电路 4 简单的温度控制器电路 5 简易晶闸管温度自动控制电路 6 用双向晶闸管控制温度电路 7 XCT-101动圈式温度调节仪控温电路 8 电接点压力式温度表控温电路 9 TDA-8601型温度指

    03-08
  • 常见CAN总线干扰现象

    CAN总线由其高可靠和实时性被广泛应用于新能源汽车、轨道交通、医疗、工程机械等行业,但是由于大部分行业工作环境都比较恶劣,所以提高总线抗干扰能力是目前行业用户最为关注的方向。   常见CAN总线干扰现象 如下为一条流水线有两路CAN总线,一条总线有22个

    03-11
下载排行榜
更多
广告
X
广告