• 工业机器人的发展背景

    一、工业机器人的发展背景 1920年,捷克剧作家卡里洛·奇别克在其科幻剧本《罗萨姆万能机器人制造公司》(Rossum's Universal Robots)首次使用了ROBOT这个名词,之后便成为机器人的代名词。 1938年3月,The Meccano M...

    01-14 22浏览
  • 常见的串口类型介绍

    核桃发现,群里的小伙伴还是有很多搞不明白“串口”的概念!有一部分小伙伴认为“串口”只是单片机的UART或者USART。但事实上单片机的UART和USART仅仅只是“串口”的一种类型,也就是我们常用TTL。常见的串口类型有以下几种:(1)TTL(全双工,逻辑0:0~0.5V,逻辑1:2.4~5V):电压的范围通常在0~3.3V或者0V~5V,主要应用在嵌入式单机系统中。但是这个TTL的电压和速率都比较低,所以就注定了它不适合用于长距离的通讯传输,所以一般更适合板级通讯!(2)RS-232(全双工,逻辑0:+3~+15V,逻辑1:-15V~-3V):典型电压为±12V,电压比TTL高,传输距离比TTL远,最大理论传输距离在15米。但由于232采用的是单端传输的方式,而不是差分的传输方式,所以更容易受到外部干扰的影响。(4)RS-422/RS-485(半双工):采用差分的传输方式,更加稳定,适合长距离传输,最大可达1200米,但422只能有一个发送器和最多10个接收器,485最多可达32个设备。图片来源于网络总结表图片来源于网络在实际的设计中,如果外接设备通讯方式采用的是232/422/485方式,那就不能直接接单片机的UART/USART,必须要加相应的电平转换芯片。图片

    01-03 124浏览
  • GPIO,I2C,SPI,UART,USART,USB的区别

    通信方式梳理:GPIO,I2C,SPI,UART,USART,USB的区别

    01-02 55浏览
  • 串行接口为什么比并行接口要好?

    虽然并行接口在许多领域曾经广泛使用,但随着信号完整性要求的提高和传输速率的提升,许多并行接口逐步被高速串行接口(如 PCIe、SATA、以太网等)取代。然而,并行接口仍在一些嵌入式系统和专用场景中保留了优势,如 DDR 内存,仍然不可或缺。 一、并行接口的没落 在计算机和电子设备的发展历史中,并行接口曾一度占据主导地位。并行接口通过多条数据线同时传输多个比特位的数据,具备较高的带宽性能。然而,随着技术的发展,并行接口逐渐被串行接口所取代。这一转变的主要原因在于并行接口固有的一些缺陷: 信号干扰:并行接口需要多条信号线,这些线之间的电磁干扰会限制信号完整性,特别是在高频率下。 布线复杂度:并行接口的信号线数量多,PCB布线复杂,容易增加成本和设计难度。 同步难度:在高频情况下,保持所有信号线同步(即数据到达的时间一致)变得极具挑战性。 常见的并行接口 以下是一些经典的并行接口: IDE (Integrated Drive Electronics):用于连接硬盘和主板,后来被串行接口SATA取代。 PCI (Peripheral Component Interconnect):并行的计算机总线标准,逐步被PCI Express(串行接口)替代。 Centronics:用于连接打印机,逐步被USB取代。 并行端口(Parallel Port):主要用于外设连接,例如打印机和扫描仪,也已逐渐淘汰。 串行接口相对并行接口的优势 串行接口通过一条或少量几条数据线传输数据,相较于并行接口,具有以下优势: 减少干扰:减少信号线数量降低了线间干扰,提高了信号完整性。 简化布线:减少引脚和PCB布线复杂性,降低了制造成本。 更高的频率:串行接口的点对点传输设计允许更高的传输速率。 同步简化:在串行接口中,通常只需同步一条数据线和一条时钟线(或者通过嵌入时钟的方法实现同步)。 适应性强:串行接口可以支持更长的传输距离,同时减少衰减。 二、串行接口的关键技术 串行接口的实现在芯片原理上涉及多个核心技术,包括数据的串/并转换、异步和同步通信的处理、时钟管理及恢复等。以下将详细探讨这些关键点: 1. 数据的串/并转换 (1) 并行到串行转换 (Parallel-to-Serial Conversion) 在串行接口中,数据通常由宽并行总线(如8位或16位)转换为单比特流传输。关键步骤: 移位寄存器 (Shift Register): 并行数据写入寄存器,时钟信号控制每次移位一位,将数据按位输出为串行流。 例如:8位数据10110011在 8 个时钟周期内输出每一位。 串行到并行的过程比较好理解,实现方法也比较多,下图只是实例帮助理解,具体一般都是用Verilog或者VHDL语言描述。 (2) 串行到并行转换 (Serial-to-Parallel Conversion) 接收端需将串行数据重组为并行数据: 移位寄存器: 数据通过串行输入端逐位移入寄存器。 当寄存器满后(如8位),输出并行数据给处理单元。 (3) 双缓冲机制: 为提高吞吐量,通常采用双缓冲机制,允许数据转换和传输同时进行。 2. 异步和同步通信 串行接口的关键在于如何保持数据收发双方同步 (1) 异步通信 (Asynchronous Communication) **定义:**数据传输中发送端和接收端的时钟无直接关联。 帧结构: 起始位 (Start Bit):标志传输开始。 数据位 (Data Bits):实际传输的内容,通常为 8 位或其他配置值。 校验位 (Parity Bit):用于简单错误检测。 停止位 (Stop Bit):标志帧结束,提供接收端时间校准。 实现要点: **波特率 (Baud Rate):**发送端和接收端必须配置一致。 **采样定时器:**接收端通过内部采样时钟检测起始位并锁定数据位。 (2) 同步通信 (Synchronous Communication) **定义:**发送端和接收端共享同一个时钟。 时钟传输: **独立时钟线:**如 SPI 协议,通过SCLK提供同步时钟信号。 **嵌入时钟:**如 Manchester 编码,时钟嵌入数据流中,接收端需恢复时钟。 实现要点: 主设备控制时钟,数据按时钟边沿采样。 接收端无需校准波特率,减少时序偏移问题。 3. 时钟处理 (1) 同步时钟的生成与分配 片上时钟生成器 (Clock Generator):通过晶振和锁相环 (PLL) 生成稳定时钟信号。 分频器:根据协议要求,生成合适频率的通信时钟。 (2) 异步时钟的采样与校准 采样率:通常为波特率的 16 倍或更高,确保高精度采样。 起始位检测:利用采样点检测电平变化,以锁定起始位位置。 4. 时钟恢复 在某些协议中,接收端需从数据流中恢复时钟信号。 (1) 从异步数据流恢复时钟 边沿检测:通过检测信号的上升沿或下降沿,重新生成采样时钟。 数字锁相环 (DPLL):用于动态调整时钟频率,以匹配发送端时钟。 (2) 嵌入时钟的提取 编码机制:如 Manchester 编码或 8b/10b 编码,时钟信号与数据流同时传输。 相位对齐:通过解码模块将时钟从数据中提取并对齐。 三、常见的串行接口 串行接口按照速率可分为低速和高速接口: 低速串行接口 UART (Universal Asynchronous Receiver Transmitter): 一种异步接口,常用于短距离通信。 应用:嵌入式设备、传感器通信等。 I²C (Inter-Integrated Circuit): 一种双线的同步串行通信接口,适合主从架构。 应用:芯片间通信(如MCU和EEPROM之间)。 SPI (Serial Peripheral Interface): 高速的全双工同步通信协议,适合主从设备。 应用:外设通信,如显示屏、传感器。 高速串行接口 USB (Universal Serial Bus): 从USB 1.0到USB 4的演变提供了逐步提升的带宽和兼容性。 应用:几乎所有的外设连接。 SATA (Serial ATA): 替代了并行ATA,用于硬盘连接。 特点:点对点连接,传输速率高。 PCIe (Peripheral Component Interconnect Express): 串行接口,用于计算机内部高速设备互连,如显卡和固态硬盘。 特点:支持多通道(x1、x4、x8等)并行。 Thunderbolt: 高速通用接口,支持数据、视频和电源的复用。 应用:高性能设备连接。 MIPI DSI/CSI: 针对移动设备的高速接口,用于显示(DSI)和摄像头(CSI)。 四、串行接口的发展趋势与技术挑战 高速接口的实现(如 PCI、PCIe、SATA、以太网和 SERDES)涉及更复杂的技术,因为数据传输速率更高,通常达到数 Gbps 或更高。以下是这些高速接口的关键原理和实现方法: 1. 串行高速接口的核心特性 高速数据传输:每秒传输数 Gbps 或更高,需要优化物理层和协议层设计。 差分信号:高速接口通常使用差分信号(如 PCIe 的 TX+/TX-),增强抗干扰能力并减少电磁辐射 (EMI)。 嵌入时钟:时钟和数据在同一信号中传输(如 PCIe 和 SATA),减少引脚数量,简化连接。并且有一系列优化SI的手段。 多通道:支持多通道并行传输(如 PCIe 的 x1、x4、x8 通道配置)。 2. 高速接口的关键技术 (1) 串并转换(SerDes) 串行器/解串器 (SerDes): 高速接口中,SerDes 是数据串行化和解串行化的核心模块。 解串器从接收的串行数据流中提取时钟。 根据时钟信号将串行数据重新转换为并行数据。 并行数据经并行总线输入串行器。 使用高速移位寄存器将数据按位输出,同时嵌入时钟信号。 发送端: 接收端: SerDes 的速率匹配:通常采用片上锁相环 (PLL) 精确控制数据传输速率。 (2) 时钟嵌入与恢复 嵌入时钟: 在高速传输中,通过编码技术(如 8b/10b 或 64b/66b 编码)将时钟信号嵌入数据流,简化布线并提高可靠性。 时钟恢复: 接收端通过锁相环 (PLL) 或时钟数据恢复 (CDR) 技术提取嵌入的时钟信号。 相位对齐:利用数据的过零点调整时钟相位,确保数据采样正确。 (3) 差分信号传输 双端传输:高速接口采用差分对(如 PCIe 的 TX+/TX-),两个信号电平相反,增强抗干扰能力。 优点: 抵消电磁干扰 (EMI)。 提高信号完整性,尤其在高频信号中减少串扰。 3. 典型高速接口的实现 (1) PCI 到 PCIe PCI(并行总线): 使用共享时钟信号,所有设备按总线仲裁机制轮流访问总线。 存在时钟偏差和信号完整性问题,限制了传输速率。 PCIe(点对点串行总线): 物理层:SerDes 负责数据串行化和解串行化。 数据链路层:处理数据包分组和错误校验。 事务层:支持高层协议(如内存读写请求)。 点对点链路:每个设备有独立的通信链路,消除总线仲裁延迟。 多通道配置:x1、x4、x8 等通道配置,多个通道可并行传输,提高带宽。 分层架构: (2) SATA(串行ATA) 架构: 由并行 ATA 演变而来,采用全双工串行通信。 使用 8b/10b 编码,嵌入时钟,支持数据速率高达 6 Gbps(SATA 3.0)。 工作原理: 主机通过 SerDes 发送串行数据流,存储设备解码后处理。 双向链路实现读写操作,同时保持高信号完整性。 (3) 以太网(Ethernet) 低速到高速的演变: 从最早的 10 Mbps 发展到 10 Gbps、25 Gbps,甚至 400 Gbps。 关键技术: 物理层:使用差分对传输,支持长距离传输。 编码:如 PAM4 编码,通过每个符号携带更多比特,提高带宽利用率。 时钟恢复:在接收端使用 CDR 技术精确提取时钟。 4. SerDes 在高速接口中的角色 SerDes 是所有高速接口的核心,实现以下功能: 发送端: 将并行数据以高频率转换为串行数据流。 嵌入时钟,减少额外的时钟线。 接收端: 从串行数据中恢复时钟信号。 对串行数据解码并重新组合成并行数据。 时序管理: 使用锁相环 (PLL) 控制高速信号的相位和频率。 减少抖动 (Jitter),确保数据完整性。 5. 信号完整性和高速设计 高速接口面临的主要挑战是信号完整性,设计中需重点考虑: 抖动 (Jitter):时钟或数据信号的随机偏移。需优化 PLL 和 SerDes 的设计以减少抖动。 眼图 (Eye Diagram):用于分析信号质量,良好的眼图表示高信号完整性。 阻抗匹配:差分对的阻抗需匹配 PCB 走线设计,避免信号反射。 去均衡 (De-Emphasis):在发送端对高频成分增加衰减,减少长距离传输中的信号失真。 五、为什么并行接口线多,却速率不如串行总线。 无需独立时钟信号,噪声干扰更少 高速串口通过编码技术(如8b/10b编码)将时钟信息嵌入数据流中,而不需要单独传输时钟信号。数据流本身经过加扰,避免了长串相同的比特(如连续超过5个0或1),确保时钟恢复的稳定性,同时消除了周期性变化,避免频谱集中。这种设计通过数据沿变使用PLL恢复时钟,进而采集数据流。省去独立时钟的传输不仅显著降低了功耗,还减少了由时钟信号引入的噪声干扰。 差分传输增强抗干扰能力 高速串口采用差分信号传输,当外界噪声同时作用于两条差分线时,接收端通过相减可以有效抵消干扰。差分设计对外界噪声有很强的抵抗能力,确保数据传输的稳定性。 无时钟偏移问题 由于高速串口不依赖同步时钟,不存在时钟与数据对齐的问题。只需保证差分信号线的长度匹配即可,这相对容易实现。差分信号的两条线总是保持相反状态且高度相关,即便发生延时变化,也可以通过简单的延时补偿实现对齐。而在并行总线中,由于多根独立信号线的无相关性,不同信号线的跳变时间容易受布线、阻抗和噪声的影响,从而产生时钟偏移问题,导致数据传输错误。 线少、干扰低 并行传输通常需要32或64条信号线,线间的电磁干扰显著,尤其在高频下,可能导致数据篡改或误码。相比之下,串行传输仅需4条线(如Rx和Tx的两对差分线)。差分信号在线路跳变时会产生相反的干扰,从而互相抵消,确保总噪声趋于零,避免内部噪声问题。 六、DDR接口为什么还保留并行,没有演进成串行总线? DDR接口保持并行传输而没有被串行总线替代,主要是因为其特定的应用需求和技术特点,使并行传输在这一场景中更具优势: 1. 延迟要求苛刻,串行传输不具备优势 并行总线延迟更低:DDR存储器的一个核心需求是低延迟。串行总线需要经过数据序列化和解序列化(SerDes)过程,这会引入额外的延迟,而DDR接口直接传输多条并行数据线,延迟更小,更适合需要实时响应的存储访问。 内存带宽与时延的平衡:DDR接口通过宽度(多条数据线并行传输)和频率的结合来提供高带宽,而串行接口在达到相同带宽时会牺牲一些时延。 2. 高带宽需求与物理距离限制 内存与控制器距离较短:DDR接口设计用于处理器和内存之间的短距离高带宽通信。在这种场景下,并行总线可以通过多条线同时传输数据,高效地利用接口带宽,而无需像串行总线那样依赖高频率来提升速率。 更高的带宽扩展性:并行总线通过增加数据位宽(如64位、128位)简单直观地扩展带宽,而串行接口受限于单通道的速率提升,需要更复杂的设计。 3. 成本与功耗的平衡 节约SerDes资源:串行总线需要SerDes模块来实现高速序列化和解序列化,这增加了成本、功耗和设计复杂性。而并行DDR接口无需额外的SerDes硬件,整体系统功耗更低。 控制信号复用困难:DDR接口中控制信号(如行列选通、地址信号等)和数据是分离的,适合并行总线的传输方式。而串行总线需要更复杂的协议和逻辑来处理这些信号,可能带来额外的开销。 4. 设计和兼容性考虑 长期成熟的生态系统:DDR技术经过多年优化,已经形成了高度成熟的标准和广泛的支持生态,包括芯片设计、PCB布线、信号完整性工具等。大规模切换到串行总线需要对整个生态进行重构,成本高昂且技术风险较大。 布线难度可控:尽管并行总线存在时钟偏移问题,但通过技术手段(如飞线对齐、信号校正等)可以有效解决。而串行总线的高速信号布线要求更高,可能反而在PCB设计中增加复杂度。 5. 适用场景的差异 串行总线(如PCIe、SATA)通常用于长距离、高速、点对点通信场景,而DDR接口的核心应用场景是短距离、低延迟的存储访问。这两种场景需求截然不同,导致串行总线的优势在DDR应用中并不显著。 虽然串行总线在许多领域表现优异,但DDR接口之所以继续采用并行架构,是因为它能更好地满足内存访问对低延迟、高带宽和成本控制的需求。同时,DDR技术已经发展得非常成熟,切换到串行总线需要巨大的技术和生态变革,因此并行传输依然是DDR接口的最优解。

    2024-12-13 90浏览
  • AT89C52单片机芯片数据传输-串口通讯

    单片机在控制本地的外围期间时,信息的交互是通过8位并行数据总线进行的,但是在较大规模的现代控制系统中,单片机还需要控制远端的设备,可以利用单片机的串行通信模块,在学习了RS-232串口通信的原理和时序后,学...

    2024-12-12 50浏览
  • 上位机到底能不能替代PLC?

    今天跟大家分享一下上位机能不能代替PLC? 网络架构 首先我们看下这张网络架构图。 从图中可以看到: 上位机属于过程监控层,PLC属于现场控制层。 PLC作为下位机,上位机与下位机进行通信,实现整个控制系统的运作。 因此正常情况下,上位机不是用来替代PLC的。 但是,有些情况下,尤其是在一些运动控制机器视觉的项目场景中,整个项目中并没有使用PLC,那么这个时候,我们能不能通过上位机来实现一些逻辑控制呢? 实现原理 PLC全称可编程逻辑控制器,主要由输入输出(IO)+ 逻辑控制(程序)+ 外部接口(通信)三部分组成。 上位机本身可以实现一定的逻辑控制和外部通信功能,输入输出我们需采用IO采集卡,大部分运动控制卡也自带IO,然后在上位机编写相应的代码来实现逻辑控制即可。 PLC的实现原理,是通过不断地从上而下,从左而右来扫描PLC程序,同时对接一些IO输入输出。 通过上位机来实现的话,实现原理与之类似,我们可以通过单独的一个线程来实现扫描,而PLC里的每个指令,我们上位机都可以通过构造对应的类或方法来实现。 原理其实是相通的,之所以PLC实现逻辑控制比较容易,是因为厂家已经帮我们封装好了很多开箱即用的指令,我们直接调用即可。 所以,如果我们使用C#上位机做这种逻辑控制比较多,也可以封装一些沿信号检测、延时定时器等一些指令,比如起保停主要就是上升沿检测。 IO采集卡 目前市面上有很多IO采集卡,大部分IO采集卡都是通过串口ModbusRTU或者以太网ModbusTCP来实现通信,这种通信效率相对较低。 我这里采用的是正运动的IO采集卡,正运动的采集卡也支持ModbusTCP通信,而且通信效率较高,后续可以测试对比一下。 另外一点就是,如果我们使用过正运动的库,我们也可以通过官方提供的运动控制卡的库来直接对接,这样就不用自己写通信库或者使用第三方通信库了。 IO采集卡型号是ECI0032,ECI0032 是正运动技术开发的一款网络 IO 控制卡,采用优化的网络通讯协议可以实现实时的 IO 控制。 ECI0032 网络 IO 控制卡支持以太网口,RS232 通讯接口和电脑相连,通过 CAN 总线可以连接各个扩展模块,从而扩展输入输出点数。 相关参数如下所示: ECI0032 板上自带 16 个通用输入口,16 个通用输出口(带过流保护)。ECI0032 带 1 个 RS232 串口,1 个以太网接口。ECI0032 带一个 CAN 总线接口,通过IO点数不够,可以通过 ZCAN 协议来连接扩展模块和控制器。 实现过程 基本的接线和配置,我这里就不详细阐述了,这里我将板卡的IP地址改为192.168.2.33。 通过一个按钮盒接了两个按钮和一个指示灯,分别表示启动、停止和状态显示。 采用Winform设计一个简单的界面,界面效果如下所示: 当连接上IO卡之后,开启一个多线程循环扫描,读取输入按钮的状态,当检测到启动按钮从False变为True的时候,给输出信号置位,当检测停止按钮从False变成True的时候,给输出信号复位。 核心代码如下所示: 这个写法有点类似于SCL的逻辑,整体实现效果如下: 最后总结一下:虽然某些场合,我们可以不使用PLC,通过上位机结合IO采集卡实现一定的逻辑控制,但是并不代表上位机就可以替代PLC。PLC作为目前工业领域使用最广泛的控制器,很多功能是上位机无法替代的。 如果看到这里了,请帮忙点个赞和在看哦! 写在最后

    2024-12-06 101浏览
  • 这是最详解CAN总线协议,没有之一

    CAN 协议即控制器局域网络 (Controller Area Network)简称,由研发和生产汽车电子产品著称的德国 BOSCH 公司开发,成为国际标准ISO11519以及ISO11898。

    2024-11-25 169浏览
  • 一次性了解GPIO,I2C,SPI,UART,USART,USB通讯方式区别

    通信方式梳理:GPIO,I2C,SPI,UART,USART,USB的区别

    2024-11-25 127浏览
  • 如何结合ARM技术与机器人系统进行开发

    移动机器人是一种能够感知外部环境,在有障碍物的环境中能够实现动态决策与规划,从而完成避障等多种功能的综合系统。机器人系统通常分为机构本体和控制系统两部分,控制系统的作用是根据用户的指令对机构本体进行...

    2024-09-04 141浏览
  • 为什么I2C信号需要上拉电阻?

    I2C信号需要上拉电阻的原因与其工作原理密切相关。

    2024-09-02 280浏览
正在努力加载更多...
广告