在电子产品的设计过程中,PCB(印刷电路板)设计是至关重要的一步,而布局则是PCB设计的核心环节。布局结果的好坏将直接影响布线的效果,因此可以毫不夸张地说,合理的布局是PCB设计成功的第一步。首先是心理层面破除完美主义(工程师常见病),其次是建立可操作的决策框架(把六诫工具化),最后是具体冲突场景的解法(高频/热/EMC等)。 一、明确优先级:重要的事情优先做 在开始布局之前,我们需要明确一个重要的原则:不是所有规则都同等重要。在众多的设计要求中,高速信号、大功率器件以及微弱信号的处理是重中之重。高速信号的走线需要特别注意,因为它们对信号完整性要求极高,任何微小的干扰都可能导致信号失真甚至系统故障。大功率器件则需要考虑散热和电源管理,避免因过热或电源不足而损坏。而微弱信号部分,如传感器信号,需要精心保护,防止受到其他强信号的干扰。只有优先处理好这些关键部分,才能确保整个电路板的稳定性和可靠性。 五、基于物理定律布局布线:经验主义不可取 在布局布线时,不能仅仅依赖经验之谈,而应基于物理定律进行设计。PCB走线的实际阻抗和空间耦合强度是两个关键因素。走线的阻抗会影响信号的传输质量和电源的稳定性,而空间耦合则可能导致信号之间的干扰。例如,高速信号走线需要保持一定的间距,以避免信号之间的串扰;电源线和地线的阻抗也需要尽量降低,以减少电压降和电磁干扰。通过合理计算和设计,确保走线的阻抗符合设计要求,同时最大限度地减少空间耦合的影响,是实现高质量PCB设计的基础。 要在心中构建一个板子上的电磁场。 六、理顺电源树与时钟树:电源和时钟是基础 电源树的布局对于整个电路板的稳定性至关重要。电源树的结构决定了电源的分配和管理,合理的电源树布局可以有效减少电源噪声的传播。同时,时钟信号的布局也需要特别注意。时钟信号是数字电路的同步信号,其质量和稳定性直接影响到整个系统的性能。高速走线的关联关系也需要仔细考虑,例如,差分信号对需要保持等长和等距,以确保信号的同步传输。通过理顺电源树、时钟关系以及高速走线的关联关系,可以有效提高电路板的信号完整性和可靠性。 七、高速走线预留参考平面:信号完整性保障 在高速信号走线时,预留参考平面的位置是必不可少的。参考平面可以为高速信号提供稳定的参考电平,减少信号的反射和干扰。例如,在差分信号对的走线中,参考平面可以有效降低差分信号之间的串扰,提高信号的质量。同时,参考平面还可以作为电源和地的参考,进一步优化电路板的电磁兼容性。因此,在布局高速信号走线时,一定要预留足够的空间用于参考平面的设计,确保信号的完整性和稳定性。 八、去耦电容靠近用电侧:稳定电源的关键 去耦电容在PCB设计中扮演着至关重要的角色。无论是模拟器件还是数字器件,都需要在电源引脚附近连接一个旁路电容,通常电容值为0.1μF。去耦电容的作用是为器件提供稳定的电源,减少电源噪声的干扰。对于模拟电路,旁路电容可以旁路电源上的高频信号,防止这些高频信号进入敏感的模拟芯片,从而避免信号路径上的噪声引入。对于数字电路,去耦电容则作为“微型”电荷库,在数字器件执行开关动作时提供额外的电荷,防止电源电压发生大的变化,避免数字信号电平进入不确定状态。因此,去耦电容必须尽量靠近器件的电源引脚,引脚尽量短,以减小走线的感抗,确保其能够有效地发挥去耦作用。 电源时钟连接器,还有定位孔等确定性的组件放置之后,重点看以SoC或者MCU或者CPU、GPU为核心的芯片组成的小系统。这个小系统包括处理器周边所有器件,和去耦电容,要围绕在处理器周围,看成一个整体。 九、保证地线良好:降低电磁干扰、保障电源完整性 地线是PCB设计中不可或缺的一部分,良好的地线布局可以有效降低电磁干扰。地线的作用是为电路提供一个稳定的参考电平,同时作为信号回流路径。如果地线布局不当,可能会导致地电位不一致,从而产生共模噪声和差模噪声。例如,电源线和地线配合不当可能会设计出系统环路,增加电磁干扰的可能性。因此,在布局地线时,应尽量采用大面积的接地平面,减少地线的阻抗,确保地电位的一致性。同时,数字地和模拟地应分开布线,最后在合适的位置连接到系统地,以避免数字信号对模拟信号的干扰。通过合理设计地线,可以有效降低电磁干扰,提高电路板的信号完整性和可靠性。
RS485是工业控制场景下,应用得非常广泛的通信协议,RS485的差分物理信号在电磁环境复杂的工业现场,有强大的抗干扰能力。 对于平时专注于应用软件开发的工程师,使用RS485进行数据传输,只要关注串口的数据收发器即可,但其实在硬件层面,RS485通信的数据收发,也需要遵循一定的机制。 RS485通信接口特点 作为工业领域上较常用的通信方式,RS485总线具有以下诸多特点: 1、收发器输出A、B之间的电平为+2V~+6V,是逻辑“1”;为-6V~-2V,是逻辑“0”。信号电平比RS232降低了,不易损坏接口芯片。另有“使能”控制信号,可使收发器处于高阻状态,切断与传输线的连接。 2、接收器的输入灵敏度为200mV。即在当接收端A、B之间的电平相差200mV时即可输出逻辑。 3、传输速率高(10Mbps),传输距离达到1200m)。 4、具有多站点传输能力,即总线上允许挂接多达128个收发器,可建立设备网络。 5、RS485收发器共模电压范围为-7V~+12V,只有满足该条件,整个网络才能正常工作。当网络线路中共模电压超出此范围时就会影响通信的稳定,甚至损坏接口。 RS485收发控制方法 RS485属于半双工总线,在实际使用时一般采用主机轮询或令牌传递的方法来分配总线控制权,RS485设备需要进行发送和接收的方向转换。 比较通用的做法是,每个RS485设备在平时均处于接收状态,只有在自己有数据要发送时才转换到发送状态,数据发送完毕后再次切换回接收状态。 第一种:程序换向控制 最常用的RS485收发换向方法是程序换向,即由MCU的一个I/O端口控制RS485收发器件的收发使能引脚,在平时使RS485收发器件处于接收状态。 如下图,这里485芯片用TI的SN65LBC184,最大速率达到250Kbps,当有数据需要发送时,MCU将RS485收发器件引脚(网络RS485_EN2)置于发送状态,完成数据发送后,再把RS485收发器件切回接收状态。 这种方式简单易行,不需增加额外成本,这种方法很多人都会知道并且基本上都用的方法。第二种:自动换向 但是,当我们采用某种硬件平台的工控主板或核心板进行二次开发时,由于工控主板或核心板上没有预留出足够的I/O端口,使得RS485收发的程序换向方法无法实现。 在某些特定的情况下,开发平台的底层驱动未对外开放,难以对底层进行二次开发,这种情况下即便有足够的I/O端口也无法实现程序换向。 为此,我们需要采用另外一种换向技术,即自动换向技术。 自动换向其实就是对使能引脚不需要单独的I/O口来控制,而是由发送引脚发送数据时候顺便控制了。 要实现这种方法可以使能那里加一个反相器,如下图,在空闲状态下,串口的发送信号TXD2为高电平,经过反相器后输出低电平,使SN65LBC184处于接收状态,而RS485总线由于上下拉电阻的作用处于A高B低的状态。 当发送数据时,TXD2信号线上的低电平比特位控制SN65LBC184进入发送状态,将该比特发送出去。而高电平比特位则使SN65LBC184处于接收状态,由RS485总线上下拉电阻把总线置于A高B低的状态,即表示发送了高电平。 反相器也可以用三极管代替,如下图所示,工作原理和加反相器一样。 但是这种方法在发送高电平时的驱动能力有限,因此会限制通讯距离,一般适用于距离不远场合。 其实,为了省去控制的麻烦,也可以采用专门的、带有AutoDirection功能的485芯片,比如MAX13487E,它省去了常用的485使能信号,从而简化了设计电路。
时钟器件部分一、晶振简介1.1定义晶振,即晶体振荡器。按照工作原理,可将其分为晶体(Crystal) 和振荡器(Oscillator)。
电路图多种多样,但是你知道有哪些经典电路图吗???电路图又是如何设计画出来的呢? 下面先给大家展示其中的50种经典电路图~ EEPROMLCD1602电路数码管RS485 红外开关蜂鸣器译码器移位寄存器 步进电机控制 复位电路下载电路 电源模块 温度模块红外热敏电阻交通灯 时钟555 彩屏 矩阵 按键单片机 烧录电路数码管 红外发射显示模块红外接收蜂鸣器驱动 流水灯 usb供电 单片机矩阵单片机电路 时钟ADC接口电路单片机电源 声音模块收音机 485蓝牙 光耦 can