摘 要: 随着大功率器件朝着高压、高电流以及小型化的方向发展,这对于器件的散热要求变得更为严格。陶瓷基板因其卓越的热导率和机械性能,被广泛应用于大功率器件的封装工艺中。本文首先综合评述了高导热 Al2O3、SiC、AlN 和 Si3N4 陶瓷的制备方法、性能特点以及研究进展,并探讨了不同成分和工艺与陶瓷热导率的关系。接着,文章详细介绍了直接沉积铜、直接键合铜、活性金属焊接、激光活性金属化和厚印刷铜等金属化技术的工艺流程及研究现状,同时指出了这些金属化技术的热点问题和存在的不足。最后,对各类陶瓷基板及其金属化工艺的未来发展进行展望。 电子元器件在电路中发挥滤波、整理、信号处理和信号控制等作用,被广泛应用于各种电气设备中[1,2]。电子元器件通常对温度极为敏感,超过 55 %的电子元器件故障源于热失效[3]。因此,为电子元器件提供良好的散热环境至关重要。随着集成电路的发展,大功率器件正朝着高电压、大电流、大功率密度及小型化的方向发展,这导致大功率器件会在更高的温度下工作。例如 SiC 功率器件可以实现超过 1000 W/cm2 的功率密度,可能在高达 500 °C 的极端环境中工作[4],而其他功率半导体器件的工作温度也可能超过 250 °C[5],这使热管理成为电子封装领域的一大挑战。器件产生的热量需先传递至基板,再由基板散发出去,这对基板的机械可靠性和热导率提出了较高要求。 目前,常见基板的性能特性如表 1 所示。环氧玻璃布层压板(FR-4)和覆金属基板是电子设备中常见的基板。然而,它们较低的热导率和较高的热膨胀系数(Coefficient of Thermal Expansion,CTE)限制了它们在恶劣环境中的应用。相比之下,陶瓷基板虽然材料和工艺成本更高,但其热导率可达到200 W/m·K,CTE 与硅接近,并且具有更高的可靠性,因此广泛应用于微电子封装、传感器和无源元件等领域[1]。电子封装中使用的陶瓷基板制备流程和应用领域如图 1 所示。陶瓷粉末与添加剂混合并成型,经烧结得到致密的陶瓷基板。由于陶瓷基板为绝缘体,需进行金属化处理,形成导电金属层以供器件安装和电气连接。最后将器件安装在金属化陶瓷基板上应用。这种工艺广泛应用于发光二极管(Light-Emitting Diode,LED)、绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor,IGBT)、SiC 器件和大功率激光器件等领域。随着人工智能、汽车电气化与智能化、航空航天、军工等行业的蓬勃发展,对高导热基板的需求不断增长。据 QYresearch 报道[6],2022年全球金属化陶瓷基板市场规模达到 11.3 亿美元,预计到2029 年将增至 41.5 亿美元,年复合增长率为18.23 %,显示出陶瓷基板广阔的市场前景,其技术与要求也将不断进步与发展。 为进一步推动陶瓷基板领域的发展,本文首先概述了当前电子封装中所使用的陶瓷基板的制备工艺。其次综述了 Al2O3、SiC、AlN 和 Si3N4 在热导率和力学性能方面的研究进展。接着,探讨了直接沉积铜(Direct Plating Copper,DPC)、直接键合铜(Direct Bonded Copper,DBC)、活性金属焊接(Active Metal Brazing,AMB)、激光活性金属化(Laser Activated Metallization,LAM)和厚印刷铜(Thick Printed Copper,TPC)等多种平面陶瓷基板金属化工艺的流程和研究现状。最后,基于综述内容,总结相关进展并展望未来发展方向。 2 电子封装的高导热陶瓷基板 2.1 高导热陶瓷基板的制造工艺 大功率器件所使用的陶瓷基板多为平面状,平面陶瓷基板的制造工艺可分为成型与烧结两步。报道中常见的成型工艺及特点如表 2 所示。其中干压成型和流延成型广泛用于陶瓷基板的工业化生 产。干压成型的工艺流程如图 2a 所示,施加压力和保压时间是干压过程中最重要的参数。流延成型被认为是制造大尺寸平面陶瓷基板的一种经济、连续和自动化的工艺[9],其工艺如图 2b 所示。流延成型在制备多层材料及器件方面具有低成本和高效率的特性[10],广泛用于制造诸如低温共烧陶瓷基板、电容器和微波介电陶瓷器件。 陶瓷的烧结是将陶瓷粉末在高温下形成致密陶瓷块体的过程。高导热的 SiC、AlN 和 Si3N4 等陶瓷因其具有特别强的共价键而难以使用纯的陶瓷粉末烧结成致密的陶瓷块体。通常通过掺入低熔点的添加剂并混合成型再一起烧结,以提高烧结体致密度。烧结按烧结过程是否形成液相分为固相烧结和液相烧结,两者的驱动力都是总表面能的减少。固相烧结是一种无需液相参与的陶瓷致密化方法,该过程主要通过三种机制实现:蒸气传输、表面-晶格-晶界扩散以及由位错迁移驱动的塑性变形,这些机制共同促进陶瓷内部颗粒间有效的致密连接[11]。液相烧结是添加剂在高温下转变成液态,形成固体颗粒和液相处于化学平衡的系统[12],并且随着烧结的进行,陶瓷的晶粒生长和致密化同时发生的一种烧结工艺。若按照工艺区分,烧结工艺还可以分为无压烧结(Pressureless Sintering,PLS)[13]、气压烧结(Gas Pressure Sintering,GPS)[14]、(Hot Press Sintering,HPS)[15]、热等静压烧结(Hot Isostatic Pressure Sintering,HIPS)[16]、放电等离子烧结(Spark Plasma Sintering,SPS)[17]等。其中 SPS、HPS 和HIPS 由于条件要求高或工艺复杂,不适合大规模生产陶瓷基板。 2.2 高导热陶瓷基板的研究现状 电子封装过程需要将模块封装在陶瓷基板上,所以要在陶瓷基板上形成一定厚度的金属层,以便于模块的焊接和电气连接,这需要满足多个指标。首先,陶瓷基板有两个主要功能:为功率模块提供结构支撑,需要高绝缘性和良好的力学性能;为功率模块散热,需要高导热性[2]。其次,陶瓷基板在某些电路中用作共模电容器,需要考虑其介电常数[26]。通常情况下,信号传播延迟与介电常数值的平方根成正比;因此,介电常数越低,信号传输速度越快,这就要求陶瓷基板具有较低的介电常数[27]。此外,许多陶瓷材料的热导率和击穿电阻随着环境温度的升高而降低,因此需要确保陶瓷在高温条件下仍能保持良好的性能。 在 1999 年出版的《先进电子封装》一书中,Ulrich 等人[28]讨论了各种陶瓷材料的性能,如表 3常见的陶瓷材料的性能[33]所示。Al2O3具有较低的强度和导热性,因此很难应用于大功率器件。BeO具有极高的热导率,但由于毒性问题,其工业应用受到严格限制[29]。BN 具有很高的热导率,但其抗弯强度低、介电损耗系数高,因而受到限制。SiC 具有优良的导热性能和适中的机械强度,但其相对较高的介电常数可能限制其在电子封装领域的应用。AlN 陶瓷具有较高的热导率、适中的抗弯强度和出色的电气性能,因此被广泛应用。Si3N4的突出特点是强度非常高,CTE 接近硅,但实际的热导率远低于本征热导率(450 W/m·K)。目前商用的高导热陶瓷基板主要包括 Al2O3、SiC、AlN 和 Si3N4基板。对于大功率器件而言,陶瓷基板的热导率是一个至关重要的性能指标,下面,本文将分别探讨这些陶瓷在该方面的研究进展。 2.2.1 Al2O3 基板 Al2O3 有多种晶体形式,如α-Al2O3、β-Al2O3、γ-Al2O3、η-Al2O3、δ-Al2O3 和θ-Al2O3[30]。其中,最稳定的为α-Al2O3,即刚玉。其它形态的 Al2O3 在 950 oC~1700 oC 时会转变成稳定的α-Al2O3[31]。α-Al2O3 是一种重要的材料,由于其硬度高、熔点高、电导率低,在电子、光学、生物医学和机械工程中有许多技术应用[32]。不同纯度的 Al2O3 的性能如表 4 所示。随着纯度的增加,Al2O3 的热导率、抗弯强度和 CTE 都有明显的增加。Al2O3 的热导率远低于 AlN,所以其在导热方面的研究报道较少。但由于 Al2O3 的制备工艺简单、成本低廉以及其它优异性能,仍可以在低功率场景应用以降低成本。《GB/T39863-2021 覆铜板用 Al2O3 陶瓷基片》对 Al2O3 基板的性能标准进行规范[33],其部分指标为:纯度≥96 %、室温热导率≥24 W/m·K 和抗弯强度≥300 MPa。 2.2.2 SiC 基板 SiC 有立方结构、六方结构和正交结构等多种晶体结构[34]。其中,立方结构是指 β-SiC,其余结构统称为 α-SiC。在低温环境下,β-SiC 更为稳定,当温度超过 2000 °C 时,会发生 β-SiC到 α-SiC 的相变。即便如此,在不纯的 SiC 体系中,当温度超过 1600 °C 时,也可能发生 β 相向 α 相的转变[35]。SiC 由于其高强度、高刚度和优异的耐腐蚀性、抗氧化性和辐照性,是恶劣环境中的重要结构材料[36]。SiC 的本征热导率为 490 W/m·K[37],但本文调研的 SiC 热导率的最大值(270 W/m·K)仅达到本征热导率的55.1 %,仍有非常大的提升空间。这是由于晶粒内晶格缺陷、晶界和残余晶间相引起的声子散射效应阻碍热传导。特别是,SiC 晶格中溶解的氧被认为是降低热导率的主要因素之一。氧气的溶解会导致硅空位的形成(如式 1 所示),从而降低声子传播效率[38]。通常,SiC 中的晶格氧来源于起始粉末中的固有晶格氧和表面的 SiO2 钝化层[39]。因此,制备高热导率的 SiC 关键在于在保证陶瓷致密的条件下,通过原料和工艺来减少晶格氧的形成。 SiC 是一种具有强大共价键的化合物,SiC粉末在高温高压的条件下才能形成致密的块体。Nadeau 等人[39]在极端的烧结条件下(2500 °C 和 5000 MPa)成功制备了纯 SiC,这凸显了其制备的困难。为了克服高温烧结的挑战,研究者常在陶瓷粉末中掺入低熔点添加剂,采取固态或液相烧结技术制备 SiC。在固态烧结过程中,适量的硼和碳已被证实能够促进 SiC 的致密化[40]。对于液相烧结,因其可以促进晶粒生长以及具有良好的缺陷修复能力,而被认为更适合制备高密度的 SiC [41]。此外,SiC 陶瓷还可以使用硅、碳和 SiC 粉末等原料反应烧结形成。反应烧结涉及多孔碳预制件的制作、液态硅的渗透以及高温下与碳的化学反应。该过程通过毛细管作用使液态硅渗透多孔预制件(由碳和 α-SiC 制成),随后液态硅与碳反应形成 β-SiC,最终与 α-SiC 结合形成致密的陶瓷。尽管反应烧结产生的陶瓷可能含有较多的残余硅和碳,导致热导率和强度较低,但其制备周期短、温度低、成型精度高,使其在工业中存在一定的应用[42]。 SiC 的热导率和力学性能与其化学组成和烧结工艺密切相关。根据文献报道,添加 BeO 作为添加剂的 SiC 可获得目前最高的实测热导率(270 W/m·K)[43]。表 5 不同成分的 SiC 的性能进一步详细展示了不同组分及烧结方法对 SiC 性能的具体影响。其中,采用 SPS 工艺制备的 SiC-0.85Y2O3-0.26Sc2O3(wt.%)陶瓷的热导率达到 262 W/m·K),高于采用 HPS制备的 SiC-0.85Y2O3-0.52Sc2O3(wt.%)陶瓷(234 W/m·K)。尽管这两种SiC 的成分相似,但由于烧结方式的差异,其热导率相差显著,表明SiC 的热导率对工艺或微小的成分变化非常敏感。 在所调研的文献中,通过固态烧结法制备的 SiC 的最高热导率仅为 192 W/m·K,远低于液相烧结制备的 SiC 的最大热导率。这是因为在液相烧结过程中,添加剂能够净化晶格,而固态烧结则无此效果。考虑到反应烧结法制备的 SiC 热导率更低,所以液相烧结更适合制备高热导率 SiC,但需搭配合适的添加剂。例如,掺入稀土氧化物可净化晶格提高热导率;而 Al2O3 添加剂则可能形成 Si 空位[38],从而降低热导率。还有文献[44,45]提供的证据表明,在保证致密度的前提下,添加剂的含量越低,SiC 热导率越高。 除了化学组分和烧结方法外,影响 SiC 热导率的其他关键因素还包括原料的晶体结构[39]和粉末粒径[46]、晶粒尺寸[47]、烧结温度[39]、烧结时长[48]、和烧结气氛[38]等,这些因素在表 6 影响 SiC 热导率的因素中有更详细的概述。 图 3 按照热导率递减的顺序(a 至 f)系统地展示了不同文献报道的 SiC 的扫描电子显微镜(Scanning Electron Microscope,SEM)图像。对比图 3a[17]与图 3b[49]可知,图3a 所示样品中的小尺寸晶粒数量相对较少,因此具有更高的热导率。然而,图 3c 的晶粒尺寸看似比图 3d 的小,且第二相更粗大,其热导率却高于图 3d[48],这需要进一步分析。根据图 4 所示的高分辨率透射电子显微镜(High Resolution Transmission Electron Microscope,HRTEM)图像,SiC 内部存在清洁晶界(图 4a)和附着有非晶膜的晶界(图 4b)两种类型[17]。当无明显连续的第二相阻断晶粒时,陶瓷的热导率主要取决于晶格缺陷的数量和晶界的纯净度。所以尽管图 3c 的晶粒尺寸较图 3d 更小,但其晶界却更干净,因此其热导率更高。这说明烧结气氛也会对 SiC 的组织造成影响。图 3e[36]展示了典型固态烧结 SiC组织,具有较多缺陷和杂质,以小晶粒为主,导致热导率不高,但其优势是制备时间短。图3f[47]展示了含 Al 的 SiC 组织,与其它添加剂明显不同,晶粒尺寸小、缺陷多、晶界宽,且晶粒内存在许多杂质,导致热导率非常低。 通过深入分析 SiC 的化学组成、烧结工艺以及微观组织特性,可获得实现高热导率 SiC 的制备要求:首先应使用合适的添加剂和烧结工艺确保 SiC 达到高致密度,同时在维持致密度的前提下,尽量降低添加剂用量;其次,为减少晶格内的氧缺陷,选用既不溶于 SiC 晶格又能有效净化晶格的添加剂;再者,在保证 SiC 的强度满足要求的情况下通过优化烧结工艺尽可能增大晶粒尺寸;最后,结合添加剂与烧结气氛间的潜在反应性,精心选择适宜的烧结气氛条件。 2.2.3 AlN 基板 AlN 凭借其出色的物理化学性能,包括高达 319 W/m·K 的本征热导率、低介电常数、高电阻率、6.2 eV 的室温宽禁带宽度、稳定的化学性质以及与硅类似的 CTE,被广泛应用在多种场景中[54]。 然而,现有研究中所记录到的 AlN 最高热导率仅为 248 W/m·K,相当于其本征值的77.4 %,表明 AlN 的热导率仍有提升空间[55]。决定 AlN 热导率的关键因素是晶格缺陷结构,其中,晶格氧缺陷尤为突出。Slack 等人[54]指出,氧以 Al2O3 形态替代氮原子进入 AlN 晶格时,每个三元氧组合会生成一个铝空位(V''),这一现象可以通过特定公式量化描述: 式中 x 为 AlN 中氧杂质数量密度和氮数量密度的比值;V''为铝空位。显而易见,AlN 晶格的氧含量对其热导率的影响至关重要[56]。 AlN 陶瓷的制备通常需要掺入低熔点氧化物作为添加剂,以降低烧结温度并优化烧结质量。不同添加剂在改善 AlN 性能方面表现出不同的效果和最优添加比例。其中,亲氧添加剂因其净化晶格的能力而被广泛应用,可有效提升 AlN 的热导率[57,58]。 表 7 列举了几种常见的 AlN 烧结添加剂及其可能发生的反应。其中,Y2O3、YF3、YbF3、Yb2O3、CaF2 和 Li2CO3 等添加剂能与 AlN 表面的 Al2O3 发生反应,实现 AlN 晶格的净化,提高热导率,以Y2O3 的效果最佳[59]。添加剂用量不足可能导致陶瓷致密度不足或晶格净化不彻底,而过量添加则易形成粗大的第二相,两者都会显著降低 AlN 的热导率[60]。为加快制备高热导率 AlN 的进程,可先测定 AlN 粉末的表面含氧量,再根据反应方程式计算所需添加剂的最佳剂量[59]。 除亲氧性外,部分添加剂还具备其它特性。例如,Li2CO3 高温分解生成的 Li2O 不仅能净化晶格,还会在高于 1600 °C 时升华,进一步净化晶界,增强 AlN 的热导率[61]。CaC2 转化成CaO-Al2O3 复合物及 CO 或 CO2 气体,有效减少陶瓷中的晶格氧、孔隙和缺陷,增强晶粒的均匀性的同时提高陶瓷的热导率[62]。相比之下,添加 Al2O3 可能溶入 AlN 晶粒内部产生缺陷,从而降低热导率[63]。 烧结方法的选择也影响添加剂的效果。Ishizaki 等人[64]研究表明,使用 1 mol% Y2O3 作为添加剂,通过 PLS 制备 AlN 时,随烧结温度升高,晶格中氧含量逐步减少,热导率也随之提高;而在 HIPS条件下,AlN 的氧含量变化不大,热导率较低。这主要因为在 PLS 过程中,Y2O3 易与Al2O3 反应并排出含氧气体,而在 HIPS 高压状态下,这种反应受限。 表 8 展示了不同成分和工艺的 AlN的性能对比。本文调研的 AlN 最高热导率为 248 W/m·K,仅使用 Y2O3 作为添加剂,采用无压烧结工艺[55]。许多采用单一稀土氧化物添加剂制备的 AlN 显示出较高的热导率,而多组分添加剂制备的 AlN 不仅热导率略逊一筹,其力学性能也并未体现出显著优势。就烧结工艺而言,PLS 和 HPS 制备的 AlN 通常具有更高的热导率,因为较高的烧结温度、更长的烧结时间和更缓慢的冷却速率有利于提高 AlN 的热导率[59],而这两种工艺非常容易实现这些条件。然而,鉴于 SPS 工艺烧结时间较短,故并不适合用于制造高导热的 AlN。 表中数据还表明,尽管高热导率的 AlN 在热传导性能上表现出色,但其力学性能常常不尽人意,这限制了其应用范围。特别是晶粒尺寸对 AlN 的整体性能有着重要的影响—较大的晶粒尺寸虽然有助于提升热导率,却可能降低其强度。因此,研究者们尝试采用多步热处理工艺以优化 AlN 的综合性能[68],即先通过较短的高温阶段促使 AlN 迅速致密化,然后在经长时间低温退火继续提高致密度,同时防止晶粒过度长大,从而同时提升 AlN 的热导率和强度。尽管如此,表中使用两步烧结制备的AlN-3Yb2O3-2YbF3(wt.%)陶瓷仍未满足《GB/T 39975-2021-氮化铝陶瓷散热基片》的性能指标。 图 5 显示了不同 AlN 样品的 SEM 组织。通过对比图 5a[68]和图 5b[68]可以发现,两步烧结法制备的 AlN 晶粒尺寸更小,这有助于提高其强度。此外,传统无压烧结法制备的 AlN 中第二相连续分布,阻断了整个 AlN 晶粒,不利于热传递。而两步烧结法制备的 AlN 中第二相弥散分布于晶粒交界处,对热传递的阻碍较小,因此具有更高的热导率。图5c[74]为 SPS 工艺制备的 AlN 的 SEM 组织,由于烧结时间较短,样品中仍存在较多空隙和粗大的第二相,导致热导率下降。同时,短时间的烧结导致添加剂难以有效净化晶格,晶粒也未充分长大,这些因素均不利于热导率的提高。相比之下,图5d[71]展示的 AlN 样品经过复杂的热处理工艺制备,尽管存在粗大的第二相,但其表现出的热导率可超过 200 W/m·K。这一显著结果可以归因于采用的预烧工艺,在此过程中,通过将生胚置于石墨坩埚中预烧,有效降低了粉末表面的氧含量,从而使得最终制备的陶瓷材料具有更低的晶格氧含量。因此,降低晶格含氧量对于提升 AlN 的热导率最为关键。此外,晶粒尺寸和第二相的尺寸及分布对热导率也存在一定的影响。 2.2.4 Si3N4 基板 Si3N4 存在 α-Si3N4、β-Si3N4 和 γ-Si3N4 三种晶体结构,其中 α-Si3N4 和 β-Si3N4 为六方结构,γ-Si3N4为立方晶尖石结构。商用 Si3N4 粉末主要为 α 相和 β 相。β-Si3N4 是热力学稳定相,因为 α→β 转变不可逆。纯的 α-Si3N4 在 2200 oC 以下不发生相变,但掺入添加剂后可在 2150 oC 以下触发 α→β 转变,机理是高温下添加剂与 Si3N4 表面相互作用形成液相,促进 β 相的形核与长大[76]。 Hirosaki 等人[77]通过分子动力学模拟发现,α-Si3N4 单晶沿 a 轴和 c 轴的理论热导率分别为 105W/m·K 和 225 W/m·K,而 β-Si3N4 相应轴向的热导率则为 170 W/m·K 和 450 W/m·K。说明 β 晶型更利于提高 Si3N4 陶瓷热导率。本调研的 Si3N4 的最高热导率为 177 W/m·K,仅为理论最大值的 39.3 %,提升潜力巨大。 Si3N4 的热导率受晶格缺陷引起的声子散射效应限制,特别是氧原子替代氮原子会形成硅空位,导致 Si3N4 的热导率下降,通常通过掺入添加剂以及优化烧结工艺来控制晶格含氧量[78]。MgO 和稀土氧化物等低熔点添加剂常用于 Si3N4 共烧。其中亲氧型添加剂能够净化晶格,有助于提升 Si3N4 的热导率[78]。但含Al 的添加剂易形成固溶体从而降低热导率[79],Fe 杂质也有类似的负面影响[80]。制备高热导率 Si3N4 的烧结工艺应采用高温高压、长时间高温退火及缓慢冷却等策略,最大限度减少晶格氧含量并促进晶粒生长[16,81]。 由于 Si3N4 不同晶粒取向热导率差异大,还可通过掺入微量 β-Si3N4 晶种,结合磁场辅助滑动铸造[82]、热压技术[83]或流延技术[16]等技术,可制备高度各向异性的 Si3N4。制备的陶瓷在某一方向(高度c 轴取向)的热导率非常高,但垂直于该方向的热导率相对较低。 此外,还能够以硅粉为原料,通过反应烧结法(Reaction-Bonded Sintering,RBS)制备高热导率Si3N4。该工艺流程涉及硅粉与添加剂的混合及成型、硅粉的氮化以及高温烧结。反应烧结 Si3N4 因原材料成本低、氮化过程中坯体尺寸稳定且烧结后无需二次加工而被广泛应用[84]。理论上,采用高纯硅粉制备的 Si3N4 的晶格含氧量更低,因硅粉的含氧量低于商业高纯 Si3N4 粉末的含氧量[81]。而且,由于氧气在β-Si3N4 中的溶解度远小于α-Si3N4 中的溶解度,所以可以通过调控氮化温度[85]、延长氮化时间[86]和优化氮化气氛及升温速率[81]增加氮化产物中 β-Si3N4 的比例,从而降低晶格氧含量,提高整体热导率。 表 9 展示了不同 Si3N4 样品的性能数据。热导率最高的 Si3N4 由反应烧结法制备,成分为Si3N4-5.62Yb2O3-1.44MgO(wt.%),热导率为 177 W/m·K。其次为具有高度各项异性的(Si3N4-2.89MgSiN2-3.25Y2O3)(wt.%)+5 mol% β-Si3N4 陶瓷。值得注意的是,即使具有高度 c轴取向的 Si3N4,其热导率也只达到理论极限的 39.11 %,凸显了制备高热导率 Si3N4 的难度和潜力。除添加剂和烧结工艺外,原料的含氧量和晶体类型也是影响 Si3N4 热导率的重要因素。例如,Lee 等人[87]的研究表明,市售的Si3N4 粉末在氮气下退火一定时长后,含氧量从 1.27 wt.%降至 0.96 wt.%;使用退火后的粉末制备的Si3N4 与使用未退火粉末制备的 Si3N4 相比,其热导率提升了 18.32 %。Hayashi 等人[88]的报告则证明,采用 β-Si3N4 作为原料相较于 α-Si3N4 能获得更高热导率的 Si3N4。 目前制备的 Si3N4 的综合性能较差。表中高强度的 Si3N4 的热导率徘徊在 100 W/m·K 左右,而热导率最高纪录对应的抗弯强度也仅为 460 MPa,未能满足团体标准《T/SCS 000024—2023-高导热氮化硅陶瓷基片》的要求。未来研究亟待解决的问题是在大幅提升热导率的同时保持较高的强度和韧性,以避免在市场竞争中失去优势地位。 通过分析图 6 所示不同工艺和成分的Si3N4 的 SEM 图像,可深入了解其微观结构特征与热导率的关系。图 6a[81]展示的优化 RBS 工艺制备的 Si3N4 呈现出显著的晶粒尺寸不均一性,但部分晶粒硕大且孔隙稀少,加上较薄的晶界和非常低的晶格氧,共同支撑其优越的热导性能。相比之下,具有 c轴择优取向的 Si3N4(参见图6b[82])存在非均匀的晶粒和明显的晶界,导致其热导率与理论值存在显著差距。为解决此问题,可通过优化添加剂和工艺以增大晶粒尺寸、减少第二相尺寸以及提高干净晶界的占比,有望提升其热导率。观察图 6c[95]所示的传统烧结法制备的高热导率 Si3N4 样品,尽管存在较多大尺寸晶粒和相对干净的晶界,但仍可见部分被第二相包围的小晶粒,这可能是导致其热导率低的原因。最后,图 6d[86]展示的低热导率 Si3N4 的组织中,存在大量小晶粒,且晶粒间存在明显的第二相或非常厚的晶界,因此热导率非常低。结合 SEM 分析可知,制备高热导率 Si3N4 的关键在于,在确保低晶格含氧量的同时,通过调控添加剂和优化工艺流程,使 Si3N4 的组织具有高度 c轴取向、大尺寸晶粒、干净的晶界和弥散分布的第二相。 2.3 高导热陶瓷的设计 通过整合上述观点,可以提炼出制备高热导率非氧化物陶瓷的核心设计要求(机理如图 7 所示):首先要选择合适的添加剂和烧结工艺获取致密化的陶瓷;其次添加剂还应具有净化晶格的作用,能减少陶瓷的晶格缺陷;再次,陶瓷组织内无粗大连续的第二相,且陶瓷的晶界无非晶层;还有,在保证一定的强度下,陶瓷的晶粒尺寸越大越好;最后,对于热导率在晶型和晶向上存在高度各向异性的陶瓷(如 Si3N4),制备的陶瓷组织应主要为最优晶型以及最优取向。 尽管现有大量的研究报道不同的成分、工艺参数与陶瓷性能之间的关系,但陶瓷性能与诸多因素(如粉末杂质含量、粒径、成分、烧结方式、烧结温度和烧结时间等)存在复杂联系,所以难以建立准确的预测模型。然而,随着人工智能的发展,利用大规模可靠数据训练人工智能模型对陶瓷性能进行预测已成为可能。例如,日本学者 Furushima 等人[96]利用支持向量回归机器学习算法预测 RBS制备的 Si3N4 的热导率,并取得了满意结果。通过人工智能辅助设计,不仅可以大幅节省时间和成本,而且是未来高热导率陶瓷材料设计的重要发展趋势。 3 陶瓷基板的金属化工艺 在成功制备高热导平面陶瓷基板之后,需要通过金属化处理在基板表面形成金属线路,从而实现器件的焊接和电气连接。当前工业广泛应用的成熟金属化工艺主要包括 DPC、DBC 以及 AMB,此外,学术文献中还报道了一些新兴的金属化技术,如 LAM 和 TPC。在众多工艺中,AMB和 DBC陶瓷基板以其卓越的高电压、高功率承载能力脱颖而出,广泛适用于大型电机驱动器、高压变换器、SiC 器件等大功率应用场景;而其他金属化工艺则更适合于低功率需求领域,如 GaN 功率半导体、移动电源设备和汽车控制器等。 目前市场应用及学术研究中,平面陶瓷基板金属化层多采用铜材料,对其性能评估的核心指标主要集中在金属层与陶瓷基板的结合力和金属层的电阻率。此外,针对不同的应用场景,铜层的厚度、线宽、线间距以及可靠性都有特定要求。尤为重要的是,由于铜与陶瓷基板之间显著的 CTE 差异,在器件服役过程中,温度变化和 CTE 不匹配可能导致陶瓷基板产生应力裂纹,从而影响器件的整体稳定性和可靠性[97]。因此,金属化陶瓷基板的热应力翘曲性能和温度循环稳定性也是关键的技术指标。下面各章节将对各类金属化工艺进行更深入的解析。 3.1 DPC 工艺 DPC 工艺流程如图 8 所示[8]。首先,基板经过激光冲孔并彻底清洁,然后在清洁干燥的陶瓷基板上沉积种子层,接着覆盖干膜并进行显影曝光,继而进行电镀操作,以生成所需的金属线路。此后,移除多余干膜和种子层,并在铜表面覆盖一层非活性金属来保护铜层,以便于后续的钎焊过程。 DPC 具有较高的线路精度、良好的金属层结合强度和线路电阻较低等特点。由于 DPC 工艺中铜层是通过光刻与电镀相结合的方式形成,因此其金属线宽可低于 50 μm[98]。在电阻和结合强度方面,Hao 等人[99]报道的溅射铜层的抗拉强度和方阻分别为 3.0 MPa 和 0.101 Ω.cm/□,沉积铜层的方阻为0.334 Ω.cm/□。由于 Ti 与陶瓷基板的结合强度更高[100],因此,在陶瓷基板上预先溅射一层薄的 Ti 层后再溅射铜层,可显著提高结合强度,此时抗拉强度可提升至 11.8 MPa[101]。 尽管 DPC 陶瓷基板具有高导热性、高线路精度以及可通过通孔连接减少封装体积等优点,但受限于电镀工艺,其铜层厚度通常不超过 150 μm。目前 DPC 技术主要应用于大功率 LED 的封装。在高亮度 LED 和深紫外 LED 在高发热的应用场景中,不仅需要背面配备高导热基板散热,正面封装材料也需考虑热稳定性和可靠性。传统的树脂封装材料在紫外线和高温作用下易老化失效,因此目前的研究还倾向于采用高岭土、金属镍、金属铜等无机或金属材料在 DPC 基板上形成坝体结构,再搭配透明石英进行封装,以提高器件的可靠性[102]。 尽管 DPC 工艺已被广泛应用,但仍面临效率低、通孔填充不良和镀液通用性差等问题[103]。其中,通孔填充不良会影响器件的性能、稳定性和可靠性。其形成原因是电镀过程中,铜更易在通孔表面填充,导致在内部未充实的情况下使通孔闭合,最终在通孔内部形成孔洞。电镀通孔填充质量受电镀电流和添加剂配方的影响,通过优化电镀液配方及辅助工艺参数可改善通孔填充质量[103]。Wang 等人[104]通过改进电镀液配方和搅拌速率实现了高纵横比及无缺陷的镀铜通孔。其机制是通过抑制剂选择性抑制通孔表面沉积,同时使用加速剂选择性加速通孔内部沉积,当工艺参数适宜时,可形成无缺陷的镀铜通孔。 此外,DPC 陶瓷基板在电镀过程中可能存需要过长的的电镀时间、镀层厚度不均匀以及镀层内部存在宏观残余应力等问题[105]。其中,过高的残余应力可能引发镀层开裂或弯曲,且残余应力在铜层内部积累可能影响陶瓷基板的热稳定性[106]。为缓解这些问题,可以通过优化镀液配方和工艺减小基板的残余应力,如Thomas 等人[107]通过改进电镀液配方减少电镀铜对基板通孔附近区域的残余应力。 根据 QYresearch 的数据[6],全球 DPC 陶瓷基板市场规模在 2022 年已达到 2.40 亿美元,预计至2029 年将以 4.43 %的复合年增长率增长至 3.27 亿美元。尽管 DPC 陶瓷基板具有较好的市场前景,但由于环境污染问题许多城市限制电镀生产,间接影响DPC 工业的发展。此外,DPC 工艺中使用的精密溅射镀膜设备的高昂的价格也提高了整体成本。因此,迫切需要研发新的技术,提高 DPC 陶瓷基板的线厚并降低成本,从而增强其在市场竞争中的优势。 3.2 DBC 工艺 DBC 技术最早由 Burgess 等人于 1973 年开创性地提出[108],其基本原理在于利用铜箔表面氧化层在高温下形成 Cu-O 共晶熔体,该熔体具备卓越的润湿性能,在 1065 °C 共晶温度下能够有效联结陶瓷基板与未反应的铜箔,在冷却凝 固 后 确 保 两 者 间 的 强 韧 结合, 这 一 工 艺 流 程 的 可 参 见 图9[8]。 在 1065 °C 附近,Cu-O 形成的共 晶 相 , 鉴 于 纯 铜 熔 点 为1083 °C,故共晶键合需在 1065 °C至 1083 °C 的温度范围内进行,实际操 作 多 集 中 在 1070 °C 至1075 °C[108]。降温过程中,Cu-O 共晶中的过饱和氧会以 Cu2O 沉淀形式析出;在 Al2O3 或 AlN 陶瓷中,还可能出现 CuAlO2 和 CuAl2O4 等附加反应产物[108]。共晶液的形成及其氧含量对于键合效果至关重要,鉴于氧气在铜熔体中的扩散率极低(10-5 cm2/s),难以在键合过程中引入足量氧,故通常通过预氧化铜箔在铜箔表面形成Cu2O 以促进共晶液生成。铜中氧含量还对键合界面的强度有显著影响,因此对其精准调控是确保键合性能的核心环节[109]。 DBC 工艺需要搭配特定的基板使用。纯铜熔融体对 Al2O3、AlN 和 Si3N4 的润湿性较差,润湿角超过 130 °[108]。通过增加键合过程的氧分压和铜熔体的氧含量,可大幅度减少其在 Al2O3 表面的润湿角[110]。虽然 AlN 也可通过增加键合过程的氧分压、在真空环境下键合或延长键合时间以改善润湿性,但效果非常有限[111,112]。因此一般是对 AlN 进行预氧化处理,以在表面生成一层 Al2O3,再通过上述方法进行键合。但这些方法都难以改善铜熔体与 Si3N4 的润湿性,所以很少对 Si3N4 使用 DBC 工艺。 DBC 结构中铜层的厚度范围在 120μm 至 700 μm,湿法刻蚀技术使得铜层线路宽度达到 200μm[98],且良好的 DBC 基板中铜层与基板之间的结合强度高于 65 N/cm[113]。但如此大的线宽限制了DBC 陶瓷基板在精密电子器件的应用[114]。 此外,DBC 陶瓷基板还面临键合界面存在孔隙及温度循环可靠性差的双重挑战。孔隙现象如图10a[108]所示,其确切原因尚未明确,推测可能与高温下 Cu2O 还原为 Cu 时释放氧气以及陶瓷基板的气体释放有关[111,108]。关于 DBC 陶瓷基板的热循环可靠性差的问题,是由于陶瓷与铜层的巨大 CTE差异,在温度循环测试中,这种差异导致基板内部应力累积,最终引发疲劳断裂[115]。Pietranico 等人指出 DBC 陶瓷基板在温度循环中失效的主要机理[116]:一是在 DBC 基板上,疲劳裂纹起始于铜层内的敏感几何位置或接近铜/陶瓷界面,并在达到特定阈值后扩展并分支穿入陶瓷层;二是由于陶瓷层本征缺陷引发的脆性断裂,裂纹沿最大主应力方向垂直穿过界面。图 10 还展示了几例典型的 DBC陶瓷基板失效案例,超声波扫描结果显示铜层边缘存在白色特征区域,指示此处已出现裂纹(参阅图10b[117]),而图10c[118]的破裂样品横截面清晰揭示裂纹存在于陶瓷基板内部而非铜层与陶瓷界面。针对此难题,通过优化铜层设计[119]、铝箔代替铜箔[120],以及增加基板强度和韧性等手段[113],能够显著提高 DBC 陶瓷基板的温度循环可靠性。 DBC 技术的市场潜力得益于其相对简单的设备和工艺。据 QYResearch 报告[6],2022年全球 DBC陶瓷基板市场的销售额为 4.4 亿美元,预计到 2029 年将增长至 8.24 亿美元,年复合增长率为 7.75 %。同样。尽管 DBC 陶瓷基板的销售额增长显著,但其市场份额较低,主要原因是基板适配性以及其温度循环可靠性较差导致无法在大功率器件中应用。此外,DBC 陶瓷基板在湿法刻蚀工艺中面临的线路精度限制,也影响了其在小体积封装市场的应用。因此,提升 DBC 陶瓷基板在温度循环可靠性、陶瓷基板的适配性和线路精度,是扩大其市场份额的关键。 3.3 AMB 工艺 在新能源汽车行业中,SiC 模块备受重视,但当 SiC 功率器件的结温升高至 250 °C 时,由于 DBC陶瓷基板在高温条件下的温度循环可靠性很差,导致其应用受限[121]。因此,为解决这一问题,研究者开发了 AMB 陶瓷基板。AMB 工艺流程(参见图 11[8])如下:首先,在洁净的陶瓷基板上涂覆一层薄薄的焊料,随后将铜箔贴合在焊料上并放置在 800 oC 至 950 oC 的真空环境下使焊料熔化,待焊料冷却后即可形成稳固的连接。接下来,通过湿法刻蚀技术制作金属图案以满足大功率器件的电气连接需求。 鉴于常规金属与陶瓷基板间的润湿性较差,通常使用活性金属焊料改善润湿性以提高接头强度。活性金属焊料是指至少含有一种活性金属元素的焊料,当前主要活性元素为 Ti 及镧系元素[122,123]。AMB工艺中常用的活性焊料主要包括 Sn-Ag-Ti[124]和Ag-Cu-Ti[125]体系,其中 Ti 作为活性金属增强焊料与陶瓷间的润湿性,Sn 和 Ag 则起到降低熔点以及提高接头的导热性能的作用。 然而,AMB 工艺必须在高真空或保护气氛下实施,这限制了其工艺的适用性。为克服此局限性,研究者开发出可在大气环境中进行的反应空气钎焊(Reactive Air Brazing,RAB)技术。RAB 技术采用的钎焊填充金属主要由贵金属(如 Ag、Ag-Pd 合金[126])和金属氧化物(如 CuO[127]、V2O5[128]、Nb2O5[129]、SiO2[130]和 Al2TiO5[131])构成,从而赋予接头良好的抗氧化性能。在 RAB 过程中,金属氧化物能够附着于陶瓷基底表面并与之反应,通过熔融填充金属与界面的协同作用增强陶瓷基底的润湿性。同时,贵金属的优良延展性有助于缓解接头内部热应力,而金属氧化物的加入则有助于减少接头与陶瓷基体间由 CTE 差异引发的残余应力[132]。 高温钎焊工艺中,由于铜箔、焊料与陶瓷基板间 CTE 的不匹配,导致金属化基板内部积累残余应力,且该应力的大小与铜层、焊料及其反应层的厚度直接相关,通常随着厚度增加,残余应力相应增大[125,133]。为缓解这一问题,研究者采取了若干策略,如在焊料中添加改性粒子以调和CTE 的匹配性,或采用激光在陶瓷表面预置沟槽后再进行钎焊,这些方法都能在降低残余应力的同时增强接头强度[134,135]。同时,CTE 不匹配还会显著削弱 AMB 陶瓷基板的温度循环可靠性[116,136],可通过优化焊料配方进行改善[125]。此外,陶瓷材料的韧性在温度循环可靠性中起着关键作用。Miyazaki 等人[97]通过对不同性能的陶瓷制备的 AMB 陶瓷基板进行温度循环(-40 °C 至 250 °C)可靠性实验,结果如表 10 所示。其中抗弯强度为 600 MPa、韧性为 8.0 MPa·m1/2 的Si3N4 基板金属化后循环 1000 次依然保持完好,而抗弯强度虽然为 980 MPa 但韧性降为 5.5 MPa·m1/2 的 Si3N4 基板金属化后经50 次温度循环就发生失效,以及韧性更低的 AlN 基板金属化后仅经 7 次循环就失效。由此得出结论,在评估温度循环可靠性时,陶瓷材料的韧性相较于抗弯强度更为敏感,因此,在满足强度的同时选用高韧性的陶瓷基板更契合 AMB 工艺的需求。 伴随新能源汽车技术向 800 V 电压平台的转型升级,主驱逆变器功率模块正逐步由硅基模块转向 SiC 模块,与此相适应,其支撑基板也由 DBC 陶瓷基板转为 AMB-Si3N4 基板,由此推动了 AMB-Si3N4 基板市场需求的持续增长。参考 2022 年 QYresearch 的研究报告[6],当年全球 AMB 陶瓷基板市场的销售额已达到 4.33 亿美元,预计至 2029 年市场规模将跃升至 28.72 亿美元,对应年复合增长率为 26.0 %,凸显出 AMB 陶瓷基板在市场上的强劲增长趋势。 AMB 工艺具有设备、工艺简单、高可靠性、不受陶瓷基板限制等优点,是在大功率器件的应用中最具发展潜力的金属化工艺。然而,鉴于大功率电子器件行业的快速发展,对 AMB 的力学性能和长期运行可靠性提出了更高的标准,因此需要对其进行持续优化和提升。同时,AMB 陶瓷基板与DBC 陶瓷基板一样面临线路精度不足的技术瓶颈,若能开发新技术使其线路精度与 DPC 工艺相媲美,AMB 陶瓷基板将有望在未来替代其他同类基板,展现出巨大的应用潜力。 3.4 LAM 工艺 LAM 工艺通过激光束对含铝陶瓷基板进行选择性照射,被照射的陶瓷材料还原成活化的金属原子,随后将其浸入含 Cu2+的化学镀液中,活化原子促使 Cu2+还原并沉积在被照射的区域,形成金属线路图案[137]。 化学镀是一种无需外加电流的自催化氧化还原过程,通过溶液中的化学还原剂将金属离子还原为固体金属[138],而这一还原过程的能量驱动来自于溶液中的化学还原剂[139]。通常镀液中的金属难以自发还原,通常需要催化剂作为中间媒介,以降低金属成核的活化能[140]。一旦催化剂颗粒成功沉积在基底表面,即可触发大范围的金属沉积。 LAM 工艺常用含铝基板进行加工,因为激光照射后可以形成活化的 Al 原子。但 Al 原子的催化性能并不理想,需要其它的催化剂来提高沉积效率。Bindra 等人[141]的研究表明,Pd和 Pt 在碱性介质中具有优异的催化性能。尽管 Pd 基催化剂在选择性活化方面存在局限性[142],但 Pd 因其出色的催化活性而被 LAM 工艺优先选用[143]。因此,通常先在陶瓷基板上涂覆一层 PdCl2,激光照射后,PdCl2会分解成 PdO 和单质 Pd,二者均可作为化学镀铜的有效催化剂[144]。 当前,LAM 工艺在学术研究中主要关注提高线路精度和增强可靠性两个核心问题。激光照射产生的热效应会形成热影响区,热影响区也会形成少量的活化金属,导致线路增宽。为此,相较于纳秒激光,采用皮秒激光可以更精确地聚焦能量,形成狭窄而深入的活化区域,从而同步提高线路精度和金属层的结合强度[145]。此外,Lv 等人[144]在激光照射后利用王水(硫酸与硝酸体积比为 3:1 的混合溶液)选择性溶解热影响区内的活化原子后,再进行化学镀,有效减小了线路宽度。关于可靠性方面,DeSilva[137]等人发现,沉积铜层在 500 oC 退火处理后,其附着力可从初始的约 15 MPa 显著提升至 48 MPa。 LAM 工艺设计对激光参数、陶瓷基板特性和电镀工艺参数具有高度敏感性,尽管该技术结合了电镀铜的成本优势和 LAM 工艺的高线路精度的特点,但高昂的激光设备成本和化学镀带来的环境污染问题仍然是限制其进一步普及的重要原因。尽管面临这些挑战,LAM 技术仍在不断发展中,其在未来的应用前景仍值得期待。 3.5 TPC 工艺 TPC 技术利用丝网印刷工艺,在洁净陶瓷基板上涂覆粘性浆料,经历干燥后叠加印刷铜浆,并经再次干燥和烧结处理,可形成厚度介于 5 至 50 μm 的金属膜层[8,98]。对于需要更厚铜层的应用场合,须重复进行多次印刷、干燥及烧结。TPC 工艺通过消除湿法刻蚀过程,能够直接在陶瓷基板上印刷金属线路,有效降低了金属浆料的消耗。此外,通过对丝网印刷参数的精细化调控,TPC 工艺能够实现不同厚度的金属图案[146]。 TPC 工艺中,金属层与陶瓷基板的结合强度与烧结温度紧密相关。当烧结温度超过 925 oC 时,金属层与基板间的附着力低于 10 N/mm2,而在适宜的烧结条件下,附着力可提升至 30 N/mm2[147]。值得一提的是,与 DBC 陶瓷基板相比,TPC 陶瓷基板在温度循环可靠性方面展现出显著优势,其循环次数远超 DBC 陶瓷基板,且不依赖于特定的基板类型[114]。然而,印刷的金属层内部存在的孔隙和杂质问题导致金属层电阻增大,这是 TPC 技术有待解决的关键问题之一。 尽管面临电阻增加与烧结工艺优化的挑战,鉴于 TPC 陶瓷基板在基板可靠性方面的突出优势,其在众多领域中仍展现出广泛的潜在应用前景。为进一步推进 TPC 技术的应用,有必要继续探索和解决其电阻过高和烧结工艺繁琐等相关问题。 4 结论与展望 本文综合评析了电子封装中的平面陶瓷基板及其金属化技术的研究进展与特性。结果显示,Al2O3基板因热导率和强度局限,适用于低功耗场合;SiC 基板尽管热导率优越,但强度低、介电常数高,尚存改进空间;AlN 基板热导率高,但力学性能有待提升;Si3N4 基板热导率潜力大,尽管尝试多种办法制备,但实际热导率偏低。后三者的热导率提升的关键在于控制晶格氧缺陷、第二相含量、晶粒尺寸等要素,可采取亲氧添加剂、高温烧结、延长烧结或热处理时间以及采用多步烧结等方式优化。 关于金属化工艺,DPC 工艺实现了高精度线路,但受限于线路薄、高昂的设备成本及环境污染;DBC 工艺简易,但面临温度循环可靠性性差和孔隙问题;AMB 工艺展现出优秀的温度循环可靠性,应用前景广泛,当前核心在于开发新焊料、强化接头强度与可靠性;LAM 工艺也具有高线路精度的优势,但设备成本较高且也存在环境污染的风险;TPC 工艺虽简单可靠,但受限于高电阻和厚铜层制备过程繁琐。 未来发展趋势上,建议首先运用人工智能优化高热导陶瓷的成分设计与工艺流程,提升效率;其次,针对现有高热导陶瓷高温烧结难题,开发适于工业化规模生产的低温快速烧结技术。上述的基板中,Si3N4 基板具备最大的发展潜力,需攻关提升其实测热导率至 60 %理论最大值以上,同时保持高强度和韧性。此外,DPC 和 LAM 工艺需研发技术以增加线路厚度,探讨化学替代法降低成本;DBC 和 AMB 工艺需研发更高精度的刻蚀技术;TPC 工艺则需革新材料和工艺以降低电阻及简化工艺流程。 总之,期望未来能研制出具备高导热、高强度、高韧性、低 CTE 以及低介电常数的陶瓷基板,结合厚线路的 DPC 工艺或高线路精度的 AMB 工艺,有效满足大功率器件的各种封装需求。
针对永磁同步电机双电阻以及三电阻电流采样的问题给出了具体的实现思路,双电阻采样通过限制电压的方式避免进入非观测区,三电阻采样则根据PWM波形,动态设置电流采样点、对PWM进行移相重构电机电流,以避免在非观测区采集不到准确电流的情况发生。 目录 1. 双电阻采样 1.1 双电阻采样原理 1.2 双电阻采样时刻分析 1.3 双电阻电流重构方法 2. 三电阻采样 2.1 三电阻采样原理 2.2 三电阻采样时刻分析 2.3 三电阻电流重构方法 2.4 PWM移相及电流采样触发点计算流程图 目前,永磁同步电机的电流信号采样方法应用较多的是分流电阻采样,包括单电阻、双电阻以及三电阻采样法。这章讲双电阻以及三电阻电流采样法。 1. 双电阻采样 1.1 双电阻采样原理 双电阻采样相电流方法是在全桥逆变电路的任意两个下桥臂分别串联一个采样电阻,从采样电阻R1、R2两端采集电压信号,经过后端的运放以及A-D器件,后通过计算得到相电流的大小,双电阻采样电路如图1-1所示。 图1-1 双电阻采样电路图 1.2 双电阻采样时刻分析 采样时刻的分析过程与上一章单电阻采样类似,首先分析8个基础矢量下流过各个采样电阻的电流;最终确定采样时刻为矢量V000作用时进行采样,此时三相上桥臂截止的时刻,此时相电流通过二极管进行续流,通过采样续流电流可以得到真实的相电流,如下图1-2所示。(采样也可以放在PWM的前半段V000作用时间进行,没有强制要求) 图1-2 基础矢量V000作用时电流流向及采样时刻 采集到其中两相电流后,通过计算得到全部的相电流信息,从而实现三相电流的重构。 1.3 双电阻电流重构方法 双电阻电流重构方法是采样得到的两相电流后根据公式Ia + Ib + Ic = 0得到第三相电流,但双电阻采样也是有非观测区的。 在上一章节我们讲过采样时需要时间的,电流采样有一个最小脉宽时间Tmin,所以我们在采样时一定要留出足够的采样窗口,这样我们才能采集到准确的相电流。从图1-2我们可以知道,我们是在V000作用时进行采样的,并且是放在载波的后半段进行采样,也就是说我们是在占空比最大的PWMH为低电平后进行采样。 那么如果占空比最大的那一相,它的占空比过高的话,留给我们采样的时间就过短,这就又形成上一章我们提到的非观测区,如图1-3所示; 图1-3 双电阻采样非观测区与PWM波形图 如图1-3(a)所示,双电阻采样他的非观测区也是由两部分组成:扇区过渡区、高压调制区;落在非观测区的电压矢量它的基本矢量V000的作用时间过短,导致无法采集到准确的相电流进行重构。 所以采用双电阻电流重构方法的话,通常会约束电压最大相占空比在95%左右(可根据Tmin进行调整,不一定时95%),保证电流采样有充足的空间。 2. 三电阻采样 2.1 三电阻采样原理 三电阻采样相电流方法是在全桥逆变电路的三个下桥臂分别串联一个采样电阻,从采样电阻R1、R2、R3两端采集电压信号,经过后端的运放以及A-D器件,后通过计算得到相电流的大小,三电阻采样电路如图2-1所示。 图2-1 三电阻采样电路图 2.2 三电阻采样时刻分析 三电阻采样的时刻与双电阻采样时刻一样,为矢量V000作用时进行采样,此时三相上桥臂截止的时刻,此时相电流通过二极管进行续流,通过采样续流电流可以得到真实的相电流,如下图2-2所示。 图2-2 基础矢量V000作用时电流流向及采样时刻 三电阻采样与双电阻采样极其相似,并且他们的非观测区也一样,不过三电阻对于电的重构方法与双电阻有很大的区别,因为多出来的一个电阻使得三电阻采样对于采样时间的选择有了更多灵活性。 2.3 三电阻电流重构方法 双电阻可以通过限幅的方法将SVPWM最终生成的PWM占空比限制到一定范围内(比如上文提到的95%),防止V000电压矢量的工作时间过短导致电流采集发生在非观测区而产生数据错误。 但是这种方法由于空间矢量的最大范围受到限制,直接导致了电机电压降低,使得电机无法达到最大输出,电源利用率被降低。 为了解决非观测区三电阻采样问题,三电阻采样通过改变采样点位置以及移相(非对称PWM输出)的操作,从而预留出足够的窗口给AD器件采样,且保持占空比不变,保证要合成的电压矢量Uref不变。 举两个例子说明一下: 例一:以扇区1为例,高压调制区的PWM波形如图2-3所示; 图2-3 三电阻采样高压调制区PWM波形图 如图2-3(a)所示,某一个电压矢量Uref落在第一扇区的高压调制区,它的PWM波形如图2-3(b)所示,Uref的A相PWM1H占空比大于一定值,导致V000矢量作用时间很短,此时三相电流均无法正确采样。但是载波后半段V100矢量的作用时间大于Tmin,可以将采样点设置在图2-4所示的区间,采集B相电流Ib和C相电流Ic,再通过Ia + Ib + Ic = 0重构出A相电流Ia。 图2-4 V00矢量作用下电流流向及采样区间变更对比 如图2-4(a)所示,再矢量V100作用时三电阻采样能够正确采集到其中两相电流,从而重构出第三相电流,采样区间变更如图2-4(b)所示。 例二:以扇区1为例,扇区过渡区的PWM波形如图2-5所示; 图2-5 三电阻采样扇区过渡区PWM波形图 扇区过渡区的PWM波形如图2-5所示,A相PWM1H占空比大于一定值,使得载波后半段矢量V000的作用时间t1小于Tmin,且载波后半段矢量V100的作用时间t2也小于Tmin,均无法正确采集三相电流。 此时需要将B相PWM整体左移,将B相PWM上升沿与A相PWM下降沿对齐,如图2-6所示,使得采样窗口时间t2'大于Tmin,从而改变采样区间的,采集到B相电流Ib和C相电流Ic,再通过Ia + Ib + Ic = 0重构出A相电流Ia。 图2-6 移相后PWM波形及采样触发点变更对比 如图2-6(a)所示,B相的PWM整体向左移动了Δt,拓宽了采样窗口的值,在矢量V100作用时进行电流采样,采集到B、C相电流后计算出A相电流。 2.4 PWM移相及电流采样触发点计算流程图 PWM移相及电流采样触发点所在区间计算程序流程图如图2-7所示。 图2-7 PWM移相及电流采样触发点所在区间计算程序流程图
1、倒顺开关的接线 2、200smart与变频器通讯接线 3、继电控制与PlC控制的区别 4、三相电机正反转接线 5、红外感应电路 6、逆变器电路 7、插卡取电接线 8、接触器的单开双控 9、plc与继电器接线 10、功放电路 11、楼梯开关 12、行程限位做液位控制 13、浮球开关控制单相水泵 14、星三角降压启动主电路接线 15、开关电源、电磁阀、气缸接线 16、空调外机接线 17、三相四线电表直接接线 18、单相电表直接接线 19、单相电表接线注意与读数 20、家用电表接线 21、三相四线电表直接接线 22、三相四线电表互感器接线 23、加热管接线方法 24、三相加热管的两种接线方法 25、三相与单相加热管的接线方法 26、水箱加热管 27、时控开关通过接触器控制电机 28、时控开关控制照明灯 29、时控开关外观按钮介绍 30、微电脑时控开关控制接触器 31、家用三挡风扇接线 32、压力开关式小型空压机接线 33、时控开关控制路灯接线 34、经典自锁电路 35、卷扬机点动控制接线。 36、时间继电器,控制接触器延时闭合。 37、双开双控灯接线。 38、星三角降压启动控制回路接线星三角降压启动控制回路接线 39、共用水泵接线 40、有热保护的自锁电路。 41、电流的快速估算 42、家装电线应该如何选择? 43、倒顺开关控制双电容电机接线。 44、电流估算公式 45、三相四线电能表互感器接线。 46、家用配电箱的接线标准 47、一个简单的双电源电路。 48、继电器实现断相与相序保护的一个原理。
本章主要讲了SVPWM的原理、各个矢量作用时间的推导、七段式调制方式;没有讲解如何讲SVPWM如何和MCU的PWM模块结合 目录 0. 前言 1. 什么是SVPWM 1.1 SVPWM的概念 2. SVPWM(空间矢量脉宽调制)如何产生所需的空间矢量 2.3.1 矢量的合成 2.3.2 矢量的合成的范围 2.1 合成空间矢量需要的八个基础矢量 2.2 SVPWM的六个扇区 2.3 SVPWM空间矢量的合成 2.4 如何求解SVPWM基础矢量的作用时间 3. 七段式SVPWM 0. 前言 本章节会详细介绍SVPWM,计划在下一章讲解过调制。学完这一章你就会理解第一章里面PID控制器输出的dq轴电压经过变换后得到的αβ轴电压的真正含义,为什么会会输出αβ轴电压,αβ轴电压是怎么被SVPWM利用的。 之前我们讲过FOC是磁场定向控制,在进入SVPWM之前我们要清楚,这个定向的磁场是由什么产生的?怎么被控制的? 定向的磁场是由什么产生的? 上图是电机的刨面图,可以看到电机的定子是由一圈圈的线圈组成的,当线圈中有电流流过时就产生了磁场。那么要产生定向的磁场就需要产生特定的电流,要产生特定的电流就需要特定的电压。空间矢量脉宽调制(SVPWM)可以产生电压矢量,激发出电流流过线圈的绕组,从而产生磁场矢量。到这里我们已经知道了,磁场是怎么被产生的,它是由电压矢量激发出的电流流过线圈所产生的。我们通过控制电压矢量,生成一个不断旋转的磁场矢量就可以带动电机转动了。 最后一个问题这个磁场是怎么被控制的? 在描述这个问题以及进入后续的内容之前我们需要了解一些名词,端电压、线电压、相电压。 端电压:端电压就是电机三相线端相对于GND的电压,A相端电压记作UA,B相端电压记作UB,C相端电压记作UC; 线电压:线电压就是相相之间的电压Uab = UA - UB,Ubc = ...; 相电压:相电压就是电机三相线端相对于连接点N的电压,UAN = UA - UN,UBN = ...; 首先先大家要理解Uα和Uβ代表的是αβ坐标系下的一个电压矢量。其次要理解FOC是磁场定向控制。线圈中有电流流过时就会产生磁场,所以我们要产生一个定向的磁场时就需要控制电机的三相上的相电流,通过控制三相静止坐标系中的三相电流我们就可以产生出在这个平面内的任意方向的磁场,这样就可以完成磁场的定向控制。那怎么控制三相的电流呢?那就是通过控制三相的相电压,不同大小的相电压可以激励出不同大小的相电流。 第一章节我们说了为什么foc的控制流程的最后是SVPWM,而不是反Clark变换,因为通过PID控制以及反Park变换后得来的Uα和Uβ刚好又可以反Clark变换成我们想要的三相电压UAN、UBN、UCN。但是我们通过逆变电路能直接控制三相电压吗?很显然是不能的,逆变电路控制的是三相的端电压,那我们怎么通过三相的端电压来控制三相的相电压呢? SVPWM刚好可以胜任这份任务,空间矢量脉宽调制(SVPWM)中的空间矢量指的就是磁场矢量,这个磁场矢量是由电压矢量产生的。Uα和Uβ代表的是αβ坐标系下的一个电压矢量,SVPWM通过控制逆变器的开关状态(也就是控制端电压),合成所需电压矢量,从而产生转动电机转子所需的磁场矢量。 1. 什么是SVPWM 1.1 SVPWM的概念 SVPWM(Space Vector Pulse Width Modulation)是一种空间矢量脉宽调制技术,也称为电压空间矢量脉宽调制技术。它是电力电子技术中一种非常重要的调制方法,广泛应用于交流电机控制、电力电子变换等领域。 SVPWM的基本思想是以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,用逆变器不同的开关模式所产生的实际磁链矢量来追踪基准圆磁链矢量。具体实现方法是通过控制逆变器的开关状态,合成所需的电压矢量,使得电机的定子绕组中产生相应的电流矢量,从而产生所需的磁场矢量。 相比于传统的SPWM方法,SVPWM具有更高的直流电压利用率和更好的动态性能,因此在电力电子领域中得到了广泛应用。 2. SVPWM(空间矢量脉宽调制)如何产生所需的空间矢量 2.1 合成空间矢量需要的八个基础矢量 前面我们说过SVPWM通过控制逆变器的开关状态(也就是控制三相的端电压),合成所需电压矢量,从而产生转动电机转子所需的磁场矢量。在了解具体的合成过程之前我们首先要了解合成空间矢量所需要的8个基本矢量、8个基本矢量对应的驱动电路的6个开关管的状态、以及8个基本矢量对应的相电压。 首先我们知道电机驱动器的逆变电路有六个开关管,每两个开关管对应控制电机的一相的端电压,M1、M2控制A相的端电压UA,M3、M4控制B相的端电压UB,M5、M6控制C相的端电压UC。 我们可以定义一个开关函数Sx (x = a, b, c),当Sx等于1时代表x相的上管导通,下管断开(x相的端电压等于Vdc);当Sx等于0时代表x相的上管断开,下管导通(x相的端电压等于GND)。 Sa = 1代表M1导通,M2断开,Sa = 0代表代表M1断开,M2导通; Sb = 1代表M3导通,M4断开,Sb = 0代表代表M3断开,M4导通; Sc = 1代表M5导通,M6断开,Sc = 0代表代表M5断开,M6导通。 上下管是不能同时导通的,上管导通时下管就只能关断,下官导通时上管就只能关断,因为如果上下管同事导通了,那么Vdc就和GND直接接到了一起,电源就短路了,会烧坏电路以及电源。 那么通过对这三对开关管的状态进行组合我们就能得出8种不同的状态,这8种不同的状态代表了8个基础矢量Vx(x = 0,1,2,3,4,5,6,7),x的值与开关管的状态相关,我们可以把开关管的状态看成一个三位二进制数,Sa代表最高位,Sc代表最低位,当Sa = 1,Sb = 0,Sc = 0时x = 100(二进制表示),换算成十进制表示就是x = 4; 接下来我们要去计算这8种状态下的三相的相电压(计算这八个基础矢量的相电压是为了在三相静止坐标系(A-B-C)内画出这八个基础矢量),首先来分析V4(100)矢量的相电压情况,V4矢量代表着A相的上管导通,下管断开(A相端电压等于Vdc);B相的上管断开,下管导通(B相端电压等于GND),C相的上管断开,下管导通(C相端电压等于GND)。 因为三相星型电机一般都是对称绕组,相电阻一样,所以我们可以化简上图,用R代表三相绕组的阻抗如下图: 根据分压的原理可得出以下结论: 另外七种矢量的相电压推导过程同上,最后我们能得出如下表格: 2.2 SVPWM的六个扇区 在第一章我们学了三个坐标系,其中有一个坐标系叫做三相静止坐标系(A-B-C),现在我们知道每个基础矢量对应的相电压,就可以在这个坐标系以三相的相电压为坐标轴中画出这8个基础矢量。 根据三相系统向两相系统变换保持幅值不变的 原则定子电压的空间矢量可表示为: 式中 我们首先根据上面的表格在坐标系(正半轴用实线表示,负半轴用虚线表示)里画出V4矢量的各个相电压: 根据矢量合成的平行四边形法则,我们最终得到了一个在A轴正方向上,大小为Vdc的矢量,由于等幅值变换需要乘以一个2/3的系数,最终得到的矢量大小为2/3Vdc,如下: 我们按照上述的方法画出另外七个矢量,最终得到了如下的图形(其中V0和V7是坐标系零点上的两个点): 然而光只有这八个矢量还是不行的,SVPWM的目的是要在这个平面空间里面产生更多的矢量轨迹,从而使得电机平滑转动。 为了讲解后面的如何在这个平面内合成任意矢量,我们需要回顾一下PWM来做个过渡,我们知道如果电源电压为10V我们想得到1v的电压需要使用PWM脉宽调制,调整一个载波周期内高电平占空比为10%,如果想要得到10v的电压就要调整一个载波周期内高电平的占空比为100%。 SVPWM也是类似的思想,如果想在平面内得到方向与V4的矢量相同,大小为2/3Vdc大小的矢量,那我们必须控制开关管处于Sa = 1,Sb = 0,Sc = 0的状态持续一整个载波周期;如果想得到方向与V4的矢量相同,大小为1/3Vdc大小的矢量,就需要控制一个载波周期内的V4矢量的作用时间占整个载波周期的50%(也就是开关管一半时间为100状态),零矢量(V0和V7矢量称为零矢量)的作用时间占到50%(一半时间为111和000的状态)。 回到上面的图,这六个矢量将这个平面空间划分成了六份,这个平面内我们想合成的任意一个矢量都会落在这六个扇区的其中一个扇区,并且任意一个扇区的矢量我都可以通过这个扇区的两个矢量来合成,比如扇区1内的矢量我们可以通过调整V4、V6以及零矢量(V0、V7)的作用时间来合成。 2.3 SVPWM空间矢量的合成 2.3.1 矢量的合成 接下来我们定义载波周期为时间T,按照我们之前讲的,我们控制开关管处于100状态持续一整个载波周期T就能得到与V4矢量方向相同,大小为2/3Vdc的矢量。如果我们想在扇区一与α轴夹角30°的地方生成下图的黑色矢量(矢量长度为√3/3Vdc)。就需要先控制开关管处于100状态(V4矢量)作用1/2T,然后再控制开关管处于110状态(V6矢量)作用1/2T的时间,这样我们就能生成一个与黑色箭头方向一致的磁场。 如果我们是想在扇区一与α轴夹角30°的地方合成长度为√3/6Vdc矢量,那是不是先控制开关管处于100状态(V4矢量)作用1/4T,然后再控制开关管处于110状态(V6矢量)作用1/4T的时间,最后留下的1/2T的时间控制开关管处于000和111的状态(零矢量)。 第一个矢量(V4)的作用时间是t1 = 1/4T; 第二个矢量(V6)的作用时间是t2 = 1/4T; 零矢量(V0、V7)的作用时间是t0 = 1/2T; 现在大家理解SVPWM是怎么合成矢量了吧,其实就是在控制开关管不同的状态持续时间,从而合成出平面内的矢量。 2.3.2 矢量的合成的范围 上面一节我们知道了SVPWM调制怎么合成不同的电压矢量,那通过上述的方法我们可以合成这个平面内的任意一个矢量吗? 解答上个问题之前,我们先达成一个共识,SVPWM调制是为了产生不同的电压矢量合成,产生的一个在空间中旋转的电压矢量的轨迹,从而产生一个旋转的磁场带动电机转子转动。这个轨迹是个圆形,我们把它叫做矢量圆,它的半径反映了在标准的SVPWM调制下,能够达到的最大电压矢量幅值。 我个人理解这个矢量圆的半径反应了能够产生的磁场的大小,因为产生磁场是因为电流流过了线圈,电压矢量不会无限大,产生的电流也就不会无限大,因此生成的磁场也不会无限大。 那么SVPWM调制的矢量圆的半径最大是多大呢?答案就是我们上一节里面合成的第一个矢量,它的长度为√3/3Vdc。 那这是为什么呢? 我们看下面的图,当三角形OAB的B点落在由边长为Vdc的六边形上时,我们OA + AB刚好等于2/3Vdc,也就是说: 矢量OA的作用时间t1 + 矢量AB的作用时间t2 = 载波周期T; 这也就表明了,我们不能合成超过这个六边形范围外的矢量,那我们矢量圆的半径是不是就确定了就是这个六边形的内切圆,半径为√3/3Vdc。 当然通过某些手段我们可以把矢量圆的半径拓宽到2/3Vdc,这个方法就是过调制,这个我们后面再讲。 2.4 如何求解SVPWM基础矢量的作用时间 假设我们要合成如图所示的扇区1中的矢量OB,我们怎么求出矢量V4的作用时间t1和矢量V6的作用时间t2? 首先我们知道三角形的每条边与它对角的正弦值的比值相等即: 我们可以知道;代入上式得: 先分析 ,把代入得: 接下来分析,把代入得: 上面t1、t2得等式中T、Vdc是已知的,那么我们只要知道OB以及θ的值就能求出t1、t2的值了。 大家回想一下第一章我们讲的FOC框图里面SVPWM模块的输入是什么? 是不是Uα和Uβ?那么通过Uα和Uβ我们能不能算出t1、t2? 答案是可以的,因为Uα = OB × cosθ,Uβ = OB × sinθ,那么上面t1、t2的式子就可以化简为: 同理我们能计算出另外五个扇区的t1、t2矢量的作用时间如下表,令得: 既然我们知道了每个扇区的矢量都是有两个基础矢量和零矢量合成出来的,在知道两个基本矢量的作用时间后,就可以求出零矢量的作用时间t0 = T - t1 - t2。 3. 七段式SVPWM 以上图为例,我们要合成该黑色的矢量,矢量V4和矢量V6的作用时间是0.25T,矢量V4的作用时间为t1,矢量V6的作用时间为t2,零矢量的作用时间为t0。 根据t0 + t1 + t2 = T,可得t0 = 0.5T,通过之前的知识我们可以得知零矢量分为两种分别是V0(000)和V7(111),在这0.5T的时间内V0和V7各自作用力0.25T的时间。 什么式七段式SVPWM?就是我们把一个周期T划分成7段,每一段对应着一个矢量状态,通过七次矢量合成最终得到目标矢量。 既然通过七段式合成上面需要4个矢量(V4、V6、V0、V7),这4个矢量对应着六个管子不同的动作,功率管要开关那肯定会开关损耗,因此我们需要找出一种开关损耗最小的开关方式。 为了保证这七个状态切换时,开关损耗最好,我们每次要尽可能让开关的动作次数最少。 如下下图(下图的波形我们可以看成Sa、Sb、Sc的状态,也可以看成三个上桥臂的PWM波的波形): 我们要合成扇区1里面的黑色矢量,分7段(其实图中的时间段分为了八段,但是中间的111连续视为一段,这样的话就只有七段了): 第1段:合成矢量V0(000)作用时间1/8T(t0/4); 第2段:合成矢量V4(100)作用时间1/8T(t1/2); 第3段:合成矢量V6(110)作用时间1/8T(t2/2); 第4段:合成矢量V7(111)作用时间1/4T(t0/2); 第5段:合成矢量V6(110)作用时间1/8T(t2/2); 第6段:合成矢量V4(100)作用时间1/8T(t1/2); 第7段:合成矢量V0(000)作用时间1/8T(t0/4); 每一段切换时我们都只改变了Sa、Sb、Sc其中的一个状态,也就是只改变了一个半桥上的两个开关管,如果我们把第3段和第2段对调,那么开关的次数是不是就增多了,开关损耗就增加了。 总结一下六个扇区内各自矢量的合成方式如下(可以看成三相上的PWM每个载波周期内的占空比中心对称): 那么有人可能会疑惑了,既然都是零矢量,那作用效果都是一样的为什么不只用其中一个矢量?这就是七段式和五段式SVPWM的区别了,七段式的零矢量多一个,开关管的切换次数会比五段式多,开关损耗会比五段式大,但是七段式的谐波会比五段式小。在这里我们只讲七段式,对五段式感兴趣的小伙伴自己下去可以了解一下。
本文介绍了永磁同步电机的FOC控制,涵盖FOC算法、坐标变换、PID控制器、SVPWM、电流检测和转子位置提取等内容,概述了控制流程和原理,帮助读者入门电机控制技术 目录 0. 前言 1. 什么是FOC 2. FOC控制和六步换相控制的区别 3. FOC的原理 4. FOC到底在控制什么 5. FOC涉及到的坐标变换 4.1 Clark变换(三相静止坐标系 to 两相静止坐标系) 4.2 Park变换(两相静止坐标系 to 两相旋转坐标系) 4.3 反Park变换(两相旋转坐标系 to 两相静止坐标系) 6. FOC如何控制的电机的转速 0. 前言 前段时间做了一个永磁同步电机无感控制的项目,想总结一下,做个比较基础易懂的文章方便大家入门,主要介绍以下几个方面: 1.FOC控制算法、坐标变换 2.PID控制器 3.SVPWM 4.过调制 5.相电流检测及重构(单电阻、双电阻及三电阻采样) 6.转子位置及速度提取(滑膜观测器、低通滤波器、锁相环) 7.PMSM无感控制的启动 计划写完上述内容后再开始写一些别的控制算法(MTPA、弱磁控制、电流前馈补偿、高频注入等) 1. 什么是FOC FOC 是一种电机控制技术,全称为 Field Oriented Control(磁场定向控制),也称作矢量控制。该技术可以提高电机的效率、控制稳定性和精度,广泛应用于电机驱动系统中,是目前无刷直流电机(BLDC)、永磁同步电机(PMSM)、感应电机的高效控制的最优方法之一。 2. FOC控制和六步换相控制的区别 控过无刷直流电机BLDC的小伙伴应该都知道有六步换相控制,FOC控制和六步换相控制都是用来控制电机的方法,但它们的原理和控制方式略有不同。 六步换相控制是一种较为简单的电机控制方法,它将电机的六个电极分为三个相,每个相对应两个电极,然后通过依次通电、断电,来实现电机的转动。这种控制方式对电机的控制比较粗略,不能实现对电机转速和转矩的精确控制。 FOC控制则是一种更为精确、先进的控制方式。它将电机的空间磁场分解成水平和垂直两个分量,然后对这两个磁场分量分别进行控制。通过调节两个磁场分量的大小和相位差,就可以实现对电机的精确控制,包括转速、转矩、效率等方面。相对于六步换相控制,FOC控制可以使电机效率更高,噪音更小,并且可以实现更佳的控制性能。缺点是FOC控制需要更高的计算能力和控制算法,因此复杂度比六步控制要高,对控制芯片会有更高的要求。 3. FOC的原理 FOC的双环控制(电流环、速度环)内环为电流环,外环为速度环。 双环控制通过控制电流的大小可以实现电机转速的精确控制,整个双环控制的框图如下图所示: 图中foc的内环分为六个步骤(Step1、Step2、Step3、Step4、Step5、Step6),涉及三个坐标系(三相静止坐标系(A-B-C)、两相静止坐标系(α-β)、旋转坐标系(d-q))、三种坐标变换方法(Clark变换、Park变换、反Park变换)、一个控制算法(PID控制算法)、一个脉宽调制方法(SVPWM)、一个转子位置及角速度估算方法,大家先记住有这些东西,不理解没关系,我们先对着框图梳理一下FOC的整个流程,之后再给大家一一讲解。 FOC的整个过程是这样的: 1.采集三相电流IA、IB、IC; 2.将三相电流进行Clark变换得到两相静止坐标系下的电流Iα、Iβ; 3.再将Iα、Iβ进行Park变换得到旋转坐标系下的电流Id、Iq; 4.利用Iα、Iβ和Uα、Uβ利用观测器估算出转子的转速Speed_est以及角度θ; 5.计算转子的实际转速Speed_est与设定的目标转速Speed_ref的误差 6.将误差丢入PI控制器,执行器输出Iq_ref;(肯定会有人疑问为什么Id_ref=0,这个后面会讲到) 7.计算Id、Iq与设定值Id_ref、Iq_ref的误差; 8.将误差分别丢入PI控制器,执行器分别输出Ud、Uq; 9.Ud、Uq进行反Park变换得到Uα、Uβ; 10.最后Uα、Uβ经过SVPWM变成作用在三相上的电压UA、UB、UC; 看完这里肯定有人一头雾水,FOC控制它到底在控制什么???这些变换到底是在干么???为什么要变来变去??? 大家先了解一下这个框图就行,看完后面的内容再回过头来看这个框图就会恍然大悟了。上面这些问题接下来我会一一讲解。 4. FOC到底在控制什么 我们用手或者外部的其他机构匀速转动PMSM,用示波器观察它的三相电压,会看到如下的波形: 波形是三个两两相差120°的正弦电压波形,那么反过来我们在三相上输入三个相位相差120°的正弦电压,电机就会匀速转动起来。那我们输入的电压是正弦的那激励出来的电流是不是也是正弦,这样的话我们通过采集电流的波形,控制电流按照正弦波去变化,电机就能旋转起来了。(在这里先埋两个坑,后面讲SVPWM时再给填上,大家想一下SVPWM模块输出的端电压波形是不是正弦的???是不是只有正弦的端电压才能激励出正弦的相电流???) 综上所述FOC控制其实就是在控制三相电流按照正弦变化,同时控制三个变量按照幅值不变的正弦波一样变化是很困难的,控制器设计也很复杂,因此我们需要简化控制变量,这时候就轮到Clark和Park变换出场了。 现在大家知道FOC控制的变量什么了吧,就是在控三相电流,让三相电流按照正弦变化。 5. FOC涉及到的坐标变换 4.1 Clark变换(三相静止坐标系 to 两相静止坐标系) 首先我们要定义一个三相静止坐标系,以电机A相的方向画出三相静止坐标系的A轴,逆时针相差120°画出B轴,同样这样画出C轴。这三个轴上的基向量是非正交的,我们是不是可以通过某种变换将三相静止坐标系里面的向量变换到两相静止坐标系? 通过Clark变换我们可以达到上述目的,变换后的坐标系命名为两相静止坐标系 α-β ,α轴的方向与电机A相的方向相同,β轴垂直于α轴,变换公式如下(乘以2/3是为了等幅值变换): 把我们要控制的三相电流进行Clark变换,变换后的波形依旧是正弦波,不过我们要控制的变量少了一个。 变换前后的波形如下: 虽然说我们要控制的变量少了一个,但是被控量依旧是两个非线性的量,不适合用PID这类线性控制器,因此我们要想办法把它线性化,通过Park变换我们可以达成该目的。 4.2 Park变换(两相静止坐标系 to 两相旋转坐标系) 接下来我们要建立一个新的坐标系两相旋转坐标系 d-q,它是随着电机的转子不停旋转的,我们以转子的磁场方向(转子N极方向)为d轴正方向,以垂直于转子磁场的方向为q轴方向,d轴可以称为直轴,q轴称为交轴,旋转坐标系 d-q与两相静止坐标系 α-β的夹角是θ。 我们可以把两相静止坐标系上的电流变换到旋转坐标系上,变换公式如下: 把α-β坐标系下的电流进行Park变换,变换后我们会发现,两相旋转坐标系下两个控制变量都被线性化了: 那么原来需要我们控制的三个非线性的量,就被我们简化成了两个线性的量,所以接下来我们就可以使用线性控制器PID了,用这两个值作为反馈控制的对象,通过反馈不断的调整Ud和Uq,从而使激励出来的电流Id、Iq达到我们想要的参考值Id_ref、Iq_ref。 4.3 反Park变换(两相旋转坐标系 to 两相静止坐标系) 第2章开头我们讲了FOC的内环(电流环)控制框图,我们可以看到Step#3的PI控制器的输出是Ud和Uq,但是Ud和Uq是不能直接作用在电机的三相上面的,所以我们得再将dq轴的电压向量再反变换回去,得到能作用在电机三相上的相电压Ua、Ub、Uc。这时有人会问了,那反变换回去不是首先反Park变换再反Clark变换就行了,为什么最后一步是SVPWM而不是反Clark变换??? 这个我们后面讲SVPWM时再讲为什么不是反Clark,我们先看一下反Park变换。反Park变换顾名思义是将Park变换后得到的dq轴上的向量给变换回去得到αβ轴上的向量。 其变换公式如下: 变换前后的波形如下图所示: ok到这里foc的大致流程就过了一遍,下一篇文章我会详细讲解PID控制器的作用原理,在之后就来填上SVPWM埋下的坑。 6. FOC如何控制的电机的转速 前面我们将了FOC其实就是在控制电机的电流大小来使得电机转动的,由于控制三相电流比较麻烦,所以我们用了Clark和Park变换,使得控制的电流线性化了,得到了Id和Iq。 那么Id和Iq是如何影响电机转动的呢?如果想让电机加速或者减速我们应该怎么控制Id和Iq的大小呢? 首先我们知道电机转动,是因为受到了力的作用,这个力是由磁场产生的,我们叫它电磁转矩,记作Te,Te的公式如下: 式中P为极对数,Ψf为永磁体磁链,Ld、Lq分别为d、q轴的电感,id、iq分为别为d、q轴电流。 对于表贴式的电机Ld和Lq是相等的,内嵌式的电机Ld一般小于Lq; 如果我们控制的是表贴式的电机大括号里的第二项就消掉了,电磁转矩Te的大小只与Iq相关,增大Iq,Te随之增大,电机的角加速度随之变大; 如果我们控制的是内嵌式的电机,电磁转矩Te的大小与Id、Iq相关,增大Iq,Te随之增大,电机的角加速度随之变大,并且若Id为负值时,可以产生正向的电磁转矩,负地越大,Te越大,电机的角加速度越大。 本系列文章都是针对表贴式电机来讲解地,因此Ld与Lq相等,只需要把Id电流控制到0就可以了,这也就是为什么前面FOC框图里面地Id_ref = 0的原因。 7. 总结 本节主要讲了FOC的大致流程,带大家先了解FOC到底是个什么东西在做什么,各个模块具体的原理会放到后面的章节详细讲解。 FOC其实就是通过控制,相电流按照正弦变化,从而产生出旋转的磁场,控制电机转子转动。具体流程包括以下几个步骤: 通过测量电机运行时的三相定子电流,得到Ia、Ib、Ic。 将三相电流通过Clark变换转化为两相电流Iα和Iβ,这是两个正交的电流信号。 Iα和Iβ通过Park变换得到旋转坐标系下的电流Id和Iq。 Id的参考值决定了电机转子磁通量,Iq的参考值决定了电机的转矩输出大小。二者各自的实际值与参考值进行比较得到的误差,作为电流环PI控制器的输入。通过PI控制计算输出得到Vd和Vq,即要施加到电机绕组上的电压矢量。 利用观测到的电机角度,Vd和Vq经过Park逆变换到两相静止坐标系上。该计算将产生下一个正交电压值Vα、Vβ。再采用SVPWM算法判定其合成的电压矢量位于哪个扇区,计算出三相各桥臂开关管的导通时间。最后经过三相逆变器驱动模块输出电机所需的三相电压。
目录 1.上拉电阻 2.下拉电阻 3.主要作用 电阻在电路中起限制电流的作用,而上拉电阻和下拉电阻是经常提到也是经常用到的电阻。在每个系统的设计中都用到了大量的上拉电阻和下拉电阻,这两者统称为“拉电阻”,最基本的作用是:将状态不确定的信号线通过一个电阻将其箝位至高电平(上拉)或低电平(下拉),但是无论具体用法如何,这个基本的作用都是相同的,只是在不同应用场合中会对电阻的阻值要求有所不同,下面一起来了解它们吧: 1.上拉电阻 (1)概念:将一个不确定的信号,通过一个电阻与电源VCC相连,固定在高电平。 图1 上拉电阻 (2)原理:在上拉电阻所连接的导线上,如果外部组件未启用,上拉电阻则“微弱地”将输入电压信号“拉高”。当外部组件未连接时,对输入端来说,外部“看上去”就是高阻抗的。这时,通过上拉电阻可以将输入端口处的电压拉高到高电平。如果外部组件启用,它将取消上拉电阻所设置的高电平。通过这样,上拉电阻可以使引脚即使在未连接外部组件的时候也能保持确定的逻辑电平。 2.下拉电阻 概念:将一个不确定的信号,通过一个电阻与GND相连,固定在低电平。 图2 下拉电阻 3.主要作用 下拉电阻的主要作用是与上接电阻一起在电路驱动器关闭时给线路(节点)以一个固定的电平。 (1)提高电压准位: a)当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V), 这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 b)OC门电路必须加上拉电阻,以提高输出的高电平值。 (2)加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 (3)电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。 (4)N/Apin防静电、防干扰:在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。同时管脚悬空就比较容易接受外界的电磁干扰。 (5)预设空间状态/缺省电位:在一些CMOS输入端接上或下拉电阻是为了预设缺省电位。当你不用这些引脚的时候,这些输入端下拉接0或上拉接1。在I2C总线等总线上,空闲时的状态是由上下拉电阻获得 (6)提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。从而提高芯片输入信号的噪声容限增强抗干扰能力。 以上就是上拉电阻与下拉电阻的作用介绍了。对于上拉电阻和下拉电阻的选择,应结合开关管特性和下级电路的输入特性进行设定;考虑的因素包括:驱动能力与功耗的平衡,下级电路的驱动需求,高低电平的设定,频率特性等等。
电驱系统主要包含电机、电机控制单元、减速器三部分: 多数时候,用户需求决定了产品技术的演进方向。 人们对动力单元的核心需求无外乎是: ①响应要快,动力要猛; ②效率要高,能耗要省; ③故障率低,皮实耐用,稳定可靠。 更多的潜在需求在于: ①集成度足够高,给车内及前后备箱腾更多空间;②成本合理(最终会反映到车价上);③高转速时不要啸叫吵人; 下图汇总了电车动力单元的核心要素,其实电驱系统的技术和进化都是围绕着这几个方面展开的。 1、电机动力目前已经够用,压榨潜力和必要性不大 在电驱最重要的“动力”属性上,目前大多数的电车都存在动力过剩现象,以36w+的特斯拉 Model3P 为例,加速可以秒掉200w左右的性能油车,3w的宏光MiniEV 起步提速甚至要比很多油车要直接。 △ 部分高性能电机功率参数 也就是说,电机动力在目前在多数电车上已经够用,传统油车的大马力溢价,在电车上已经变得不值钱。上图列出的高功率密度电机,给人的感觉就是电车马力跟白给似的... 车企与其在现有绰绰有余的电机功率上,再花大成本研发新的动力品台,提高动力参数,倒不如把成本分摊到其他用户更能感知的地方。 △ ModelS Plaid 和 Lucid Air 蓝宝石版参数对比 当然,对于少数追求绝对动力加速的性能电车,如特斯拉ModelS Plaid、Lucid Air sapphire、悍马EV、保时捷Taycan TurboS等车型。 这里面有一些新的提升动力的关键技术: 如扁平绕组线圈、端部换位提高槽满率、优化转子结构等方法提高磁满率,进一步提高电机功率和功率密度。 近几年也越来越多车型搭载直瀑式油冷电机,让电机冷却降温更高效,帮助功率输出连续不衰减。 也有通过智能算法优化电机动力输出,来实现更好的动力、能耗、操控稳定的。 个人觉得认为上面的技术都算是电驱核心技术! △ 部分电机新技术梳理 2、电机能效已接近瓶颈,提升能效需要指望碳化硅的应用 基于第1部分,电机动力对多数用户已经够用甚至过剩的前提,下图是某电机能效Map图,可以清楚看到,在多数日常使用转速区间内,电机的能效都是在90%以上的。 而且目前多数新能源车型搭载的电机最佳能效在90%~95%,甚至部分高效电机达到了96%,此时想要在现有基础上继续提升电机能效,付出的成本将是倍数级增加,对于车企和用户都不那么太划算。 △ 某电机能效MAP图 于是提高电机控制单元中的主逆变器能效,成为提升整个电驱系统能效的新方向。 也就是用SiC碳化硅模块替代目前主流的IGBT模块! △ 碳化硅材料优点 碳化硅SiC MOSFET 的优点有很多,体积小利于封装和集成、开关/导通响应快且损耗更小、耐压值高(是硅基的10倍)、导热率高利于散热,及更高的功率密度等。 △ 碳化硅优势原理解析 最重要的是使用SiC碳化硅模块的电机控制单元,相比IGBT模块方案,可以实现从电池到电机路径,约5%的效率提升,也就是能给整车省去约5%的能耗。 相比车企多用5%续航所对应的电池成本,还徒增车重带来的负面影响,即便是当前成本相比IGBT更高的碳化硅模块,也是最好的选择! △ 特斯拉Model3 逆变器采用24颗SiC模块△ 搭载碳化硅模块的车型 上图基于水印图源做二次整理。 另外相比IGBT,碳化硅更耐高压的优势(千伏以上),更适用于后续更多新能源车型将要搭载的800v电气架构,不止用在主逆变器上,还可以应用到高压充电桩、高压电池Pack、OBC充电机、DC-DC转换器上,将有更大的用武之地,能给整车能效和充电体验带来进一步提升! △ 碳化硅器件在新能源车中的应用 这里要特别表扬下国产品牌比亚迪,BYD是全球唯一实现碳化硅器件自研自产的车企! 3、集成化大有可为,已是大势所趋,跨系统整合能力会是最核心的技术竞争力,用户价值更高! 上面主要谈的是电驱系统单个零部件的升级和优化,电驱系统零部件的多合一大集成目前已是行业大势所趋! △ 比亚迪八合一电驱总成 高度集成的电驱系统,优势有很多: 大大节省体积和减重、降低整体BOM成本、提高一体化装配效率、提高电驱系统整体功率密度等... 对于用户的价值在于,小体积省去更多Layout空间,能得到更大的车内空间和前后备箱容积;减轻重量意味着相同电量能跑更长的续航里程;同时BOM降本也间接降低了用户的购买成本。 电驱系统的演进历史,大致可以分为3个阶段: 15~17年的分体式三大件→18~20年三合一成为主流→21~现在的多合一大集成阶段。 下图整理了电驱系统的演进路线,更加直观易懂! △ 电驱系统发展演进路线 虽然多合一只是多系统零部件的组合集成,但跨部件、跨领域的系统集成,是非常考验技术和工程能力的,目前只有为数不多有积淀的大厂能够做到。 相比于电机功率提升和能效优化,多合一大集成的所带来的综合收益会更加明显,是当之无愧的新能源汽车电驱系统最重要的核心技术之一! 4、写在最后的一些感想 正如文中所看到的,中国新能源汽车换道超车在近5年内,无论在电池领域 、电驱领域、以及核心零部件、及核心技术领域,其实已经走在世界前列,成效显著,令人振奋! 就电驱系统领域而言,国外车企中特斯拉和Lucid在这个领域相对领先,Tire1中博世、大陆、博格华纳、采埃孚等有很多产品和布局,但我们国内有如比亚迪、华为、精进、蔚来XPT等企业也同样掌握诸多Knowhow,甚至还领先半个身位。 国内日渐成熟完善的新能源汽车配套生态,将会成为国产新能源汽车崛起,领先全球的重要推力。 可以预见的是,随着新能源汽车渗透率的不断提高,国产新能源车将不断替代动作缓慢的合资/外资品牌,同时打破合外资品牌的溢价,抢占到更多市场占有率!
来源:发动机技术 中国车用电机在全球资源条件下具有明显的比较优势,发展潜力较大。从新能源汽车的产业链来看,受益端将主要集中在核心零部件领域。国内车用驱动电机行业现状:电机业中的小行业、但制造...