PLC与变频器两者是一种包含与被包含的关系,PLC与变频器都可以完成一些特定的指令,用来控制电机马达,PLC是一种程序输入执行硬件,变频器则是其中之一。 但是PLC的涵盖范围又比变频器大,还可以用来控制更多的东西,应用领域更广,性能更强大,当然PLC的控制精度也更大。变频器无法进行编程,改变电源的频率、电压等参数,它的输出频率可以设为固定值,也可以由PLC动态控制。 PLC是可以编程序的,用来控制电气元件或完成功能、通信等任务。 PLC与变频器之间通信需要遵循通用的串行接口协议(USS),按照串行总线的主从通信原理来确定访问的方法。总线上可以连接一个主站和最多31个从站,主站根据通信报文中的地址字符来选择要传输数据的从站,在主站没有要求它进行通信时,从站本身不能首先发送数据,各个从站之间也不能直接进行信息的传输。 PLC基本结构图 PLC可编程控制器的存储器可以分为系统程序存储器、用户程序存储器及工作数据存储器等三种。 1、系统程序存储器 系统程序存储器用来存放由可编程控制器生产厂家编写的系统程序,并固化在ROM内,用户不能直接更改。系统程序质量的好坏,很大程度上决定了PLC的性能。 其内容主要包括三部分:第一部分为系统管理程序,它主要控制可编程控制器的运行,使整个可编程控制器按部就班地工作,第二部分为用户指令解释程序,通过用户指令解释程序,将可编程控制器的编程语言变为机器语言指令,再由CPU执行这些指令;第三部分为标准程序模块与系统调用程序。 2、用户程序存储器 根据控制要求而编制的应用程序称为用户程序。用户程序存储器用来存放用户针对具体控制任务,用规定的可编程控制器编程语言编写的各种用户程序。 目前较先进的可编程控制器采用可随时读写的快闪存储器作为用户程序存储器,快闪存储器不需后备电池,断电时数据也不会丢失。 3、工作数据存储器 工作数据存储器用来存储工作数据,即用户程序中使用的ON/OFF状态、数值数据等。在工作数据区中开辟有元件映像寄存器和数据表。其中元件映像寄存器用来存储开关量、输出状态以及定时器、计数器、辅助继电器等内部器件的ON/OFF状态。数据表用来存放各种数据,它存储用户程序执行时的某些可变参数值及A/D转换得到的数字量和数字运算的结果等。 变频器基本结构图 变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 PLC与变频器一般有三种连接方法 ①利用PLC的模拟量输出模块控制变频器PLC的模拟量输出模块输出0~5V电压信号或4~20mA电流信号,作为变频器的模拟量输入信号,控制变频器的输出频率。这种控制方式接线简单,但需要选择与变频器输入阻抗匹配的PLC输出模块,且PLC的模拟量输出模块价格较为昂贵,此外还需采取分压措施使变频器适应PLC的电压信号范围,在连接时注意将布线分开,保证主电路一侧的噪声不传至控制电路。 ②利用PLC的开关量输出控制变频器。PLC的开关输出量一般可以与变频器的开关量输入端直接相连。这种控制方式的接线简单,抗干扰能力强。利用PLC的开关量输出可以控制变频器的启动/停止、正/反转、点动、转速和加减时间等,能实现较为复杂的控制要求,但只能有级调速。 使用继电器触点进行连接时,有时存在因接触不良而误操作现象。使用晶体管进行连接时,则需要考虑晶体管自身的电压、电流容量等因素,保证系统的可靠性。另外,在设计变频器的输入信号电路时,还应该注意到输入信号电路连接不当,有时也会造成变频器的误动作。例如,当输入信号电路采用继电器等感性负载,继电器开闭时,产生的浪涌电流带来的噪声有可能引起变频器的误动作,应尽量避免。 ③PLC与RS-485通信接口的连接。所有的标准西门子变频器都有一个RS-485串行接口(有的也提供RS-232接口),采用双线连接,其设计标准适用于工业环境的应用对象。单一的RS-485链路最多可以连接30台变频器,而且根据各变频器的地址或采用广播信息,都可以找到需要通信的变频器。链路中需要有一个主控制器(主站),而各个变频器则是从属的控制对象(从站)。 PLC的变频器控制电机正反转接线图 1.按接线图将线连好后,启动电源,准备设置变频器各参数。 2.按“MODE”键进入参数设置模式,将Pr.79设置为“2”:外部操作模式,启动信号由外部端子(STF、STR)输入,转速调节由外部端子(2、5之间、4、5之间、多端速)输入。 3.连续按“MODE”按钮,退出参数设置模式。 4.按下正转按钮,电动机正转启动运行。 5.按下停止按钮,电动机停止。 6.按下反转按钮,电动机反转启动运行。 7.按下停止按钮,电动机停止。 8. 若在电动正转时按下反转按钮,电动机先停止后反转;反之,若在电动机反转时按下正转按钮,电动机先停止后正转。 PLC与变频器的接线图 PLC和变频器通讯方式 1、PLC的开关量信号控制变频器 PLC(MR型或MT型)的输出点、COM点直接与变频器的STF(正转启动)、RH(高速)、RM(中速)、RL(低速)、输入端SG等端口分别相连。PLC可以通过程序控制变频器的启动、停止、复位;也可以控制变频器高速、中速、低速端子的不同组合实现多段速度运行。但是,因为它是采用开关量来实施控制的,其调速曲线不是一条连续平滑的曲线,也无法实现精细的速度调节。 2、PLC的模拟量信号控制变频器 硬件:FX1N型、FX2N型PLC主机,配置1路简易型的FX1N-1DA-BD扩展模拟量输出板;或模拟量输入输出混合模块FX0N-3A;或两路输出的FX2N-2DA;或四路输出的FX2N-4DA模块等。优点:PLC程序编制简单方便,调速曲线平滑连续、工作稳定。 缺点:在大规模生产线中,控制电缆较长,尤其是DA模块采用电压信号输出时,线路有较大的电压降,影响了系统的稳定性和可靠性。 3、 PLC采用RS-485通讯方法控制变频器 这是使用得最为普遍的一种方法,PLC采用RS串行通讯指令编程。优点:硬件简单、造价最低,可控制32台变频器。缺点:编程工作量较大。 4、 PLC采用RS-485的Modbus-RTU通讯方法控制变频器 三菱新型F700系列变频器使用RS-485端子利用Modbus-RTU协议与PLC进行通讯。优点:Modbus通讯方式的PLC编程比RS-485无协议方式要简单便捷。缺点:PLC编程工作量仍然较大。 5、 PLC采用现场总线方式控制变频器 三菱变频器可内置各种类型的通讯选件,如用于CC-Link现场总线的FR-A5NC选件;用于Profibus DP现场总线的FR-A5AP(A)选件;用于DeviceNet现场总线的FR-A5ND选件等等。三菱FX系列PLC有对应的通讯接口模块与之对接。 优点:速度快、距离远、效率高、工作稳定、编程简单、可连接变频器数量多。缺点:造价较高。 6、采用扩展存储器 优点:造价低廉、易学易用、性能可靠 缺点:只能用于不多于8台变频器的系统。 PLC和变频器通讯接线图 三菱PLC控制台达变频器案例分析 在不外接控制器(如PLC)的情况下,直接操作变频器有三种方式: ①操作面板上的按键; ②操作接线端子连接的部件(如按钮和电位器); ③复合操作(如操作面板设置频率,操作接线端子连接的按钮进行启/停控制)。为了操作方便和充分利用变频器,也可以采用PLC来控制变频器。 PLC控制变频器有三种基本方式: ①以开关量方式控制; ②以模拟量方式控制; ③以RS485通信方式控制。 PLC以开关量方式控制变频器的硬件连接 变频器有很多开关量端子,如正转、反转和多档转速控制端子等,不使用PLC时,只要给这些端子接上开关就能对变频器进行正转、反转和多档转速控制。当使用PLC控制变频器时,若PLC是以开关量方式对变频进行控制,需要将PLC的开关量输出端子与变频器的开关量输入端子连接起来,为了检测变频器某些状态,同时可以将变频器的开关量输出端子与PLC的开关量输入端子连接起来。 PLC以开关量方式控制变频器的硬件连接如下图所示。当PLC内部程序运行使Y001端子内部硬触点闭合时,相当于变频器的STF端子外部开关闭合,STF端子输入为ON,变频器启动电动机正转,调节10、2、5端子所接电位器可以改变端子2的输入电压,从而改变变频器输出电源的频率,进而改变电动机的转速。如果变频器内部出现异常时,A、C端子之间的内部触点闭合,相当于PLC的X001端子外部开关闭合,X001端子输入为ON。 PLC以模拟量方式控制变频器的硬件连接 变频器有一些电压和电流模拟量输入端子,改变这些端子的电压或电流输入值可以改变电动机的转速,如果将这些端子与PLC的模拟量输出端子连接,就可以利用PLC控制变频器来调节电动机的转速。模拟量是一种连续变化的量,利用模拟量控制功能可以使电动机的转速连续变化(无级变速)。 PLC以模拟量方式控制变频器的硬件连接如下图所示,由于三菱FX2N-32MR型PLC无模拟量输出功能,需要给它连接模拟量输出模块(如FX2N-4DA),再将模拟量输出模块的输出端子与变频器的模拟量输入端子连接。当变频器的STF端子外部开关闭合时,该端子输入为ON,变频器启动电动机正转,PLC内部程序运行时产生的数字量数据通过连接电缆送到模拟量输出模块(DA模块),由其转换成0~5V或0~10V范围内的电压(模拟量)送到变频器2、5端子,控制变频器输出电源的频率,进而控制电动机的转速,如果DA模块输出到变频器2、5端子的电压发生变化,变频器输出电源频率也会变化,电动机转速就会变化。 PLC在以模拟量方式控制变频器的模拟量输入端子时,也可同时用开关量方式控制变频器的开关量输入端子。 PLC以RS485通信方式控制变频器的硬件连接 PLC以开关量方式控制变频器时,需要占用较多的输出端子去连接变频器相应功能的输入端子,才能对变频器进行正转、反转和停止等控制;PLC以模拟量方式控制变频器时,需要使用DA模块才能对变频器进行频率调速控制。如果PLC以RS485通信方式控制变频器,只需一根RS485通信电缆(内含5根芯线),直接将各种控制和调频命令送给变频器,变频器根据PLC通过RS485通信电缆送来的指令就能执行相应的功能控制。 RS485通信是目前工业控制广泛采用的一种通信方式,具有较强的抗干扰能力,其通信距离可达几十米至上千米。采用RS485通信不但可以将两台设备连接起来进行通信,还可以将多台设备(最多可并联32台设备)连接起来构成分布式系统,进行相互通信。 1.变频器的RS485通信口 三菱FR500系列变频器有一个用于连接操作面板的PU口,该接口可用作RS485通信口,在使用RS485方式与其他设备通信时,需要将操作面板插头(RJ45插头)从PU口拔出,再将RS485通信电缆的一端插入PU口,通信电缆另一端连接PLC或其他设备。三菱FR500系列变频器PU口外形及各引脚功能说明如下图所示。 三菱FR500系列变频器只有一个RS485通信口(PU口),面板操作和RS485通信不能同时进行,而三菱FR700系列变频器除了有一个PU接口外,还单独配备了一个RS485通信口(接线排),专用于进行RS485通信。三菱FR700系列变频器RS485通信口外形及各功能说明如下图所示,通信口的每个功能端子都有2个,一个接上一台RS485通信设备,另一个端子接下一台RS485通信设备,若无下一台设备,应将终端电阻开关拨至“100Ω”侧。 2.PLC的RS485通信口 三菱FX PLC一般不带RS485通信口,如果要与变频器进行RS485通信,须给PLC安装FX2N-485BD通信板。485BD通信板的外形和端子如下图(a)所示,通信板的安装方法如下图(b)所示。 (a)外形 (b)安装方法 3.变频器与PLC的RS485通信连接 (1)单台变频器与PLC的RS485通信连接 单台变频器与PLC的RS485通信连接如下图所示,两者在连接时,一台设备的发送端子(+\-)应分别与另一台设备的接收端子(+\-)连接,接收端子(+\-)应分别与另一台设备的发送端子(+\-)连接。 (2)多台变频器与PLC的RS485通信连接 多台变频器与PLC的RS485通信连接如下图所示,它可以实现一台PLC控制多台变频器的运行。 PLC控制变频器驱动电动机正反转的电路、程序及参数设置 1.PLC与变频器的硬件连接线路图 PLC以开关量方式控制变频器驱动电动机正反转的线路图如下图所示。 2.变频器的参数设置 在使用PLC控制变频器时,需要对变频器进行有关参数设置,具体见下表。 3.编写PLC控制程序 变频器有关参数设置好后,还要用编程软件编写相应的PLC控制程序并下载给PLC。PLC控制变频器驱动电动机正反转的PLC程序如下图所示。 PLC控制变频器驱动电动机多档转速运行的电路、程序及参数设置 变频器可以连续调速,也可以分档调速,FR-500系列变频器有RH(高速)、RM(中速)和RL(低速)三个控制端子,通过这三个端子的组合输入,可以实现7档转速控制。如果将PLC的输出端子与变频器这些端子连接,就可以用PLC控制变频器来驱动电动机多档转速运行。 1.PLC与变频器的硬件连接线路图 PLC以开关量方式控制变频器驱动电动机多档转速运行的线路图如下图所示。 2.编写PLC控制程序 PLC以开关量方式控制变频器驱动电动机多档转速运行的PLC程序如下图。
1、倒顺开关的接线 2、200smart与变频器通讯接线 3、继电控制与PlC控制的区别 4、三相电机正反转接线 5、红外感应电路 6、逆变器电路 7、插卡取电接线 8、接触器的单开双控 9、plc与继电器接线 10、功放电路 11、楼梯开关 12、行程限位做液位控制 13、浮球开关控制单相水泵 14、星三角降压启动主电路接线 15、开关电源、电磁阀、气缸接线 16、空调外机接线 17、三相四线电表直接接线 18、单相电表直接接线 19、单相电表接线注意与读数 20、家用电表接线 21、三相四线电表直接接线 22、三相四线电表互感器接线 23、加热管接线方法 24、三相加热管的两种接线方法 25、三相与单相加热管的接线方法 26、水箱加热管 27、时控开关通过接触器控制电机 28、时控开关控制照明灯 29、时控开关外观按钮介绍 30、微电脑时控开关控制接触器 31、家用三挡风扇接线 32、压力开关式小型空压机接线 33、时控开关控制路灯接线 34、经典自锁电路 35、卷扬机点动控制接线。 36、时间继电器,控制接触器延时闭合。 37、双开双控灯接线。 38、星三角降压启动控制回路接线星三角降压启动控制回路接线 39、共用水泵接线 40、有热保护的自锁电路。 41、电流的快速估算 42、家装电线应该如何选择? 43、倒顺开关控制双电容电机接线。 44、电流估算公式 45、三相四线电能表互感器接线。 46、家用配电箱的接线标准 47、一个简单的双电源电路。 48、继电器实现断相与相序保护的一个原理。
伺服控制1、交流伺服电机的工作原理 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 2、伺服系统的组成及分类 组成: 伺服系统是以位置和角度为控制量的控制系统的总称,与位置和角度相关联的速度、角速度、加速度、力等为控制量的系统也包含在伺服系统内。 分类: 1. 按控制结构分类分为:开环式、闭环式。 2. 按驱动部件分类分为: a. 步进电动机伺服系统。 b. 直流电动机伺服系统。 c. 交流电动机伺服系统。 3、伺服马达(交流)的特点 1. 定位精度高,普通伺服马达可达到0.036度 2. 回应时间快。 3. 控制方便灵活,控制系统易于实现。 4. 型号较多,可根据不同的应用环境选择不同的类型。 5. 提供全闭环控制,可适时监控运行状况,进行适当的调整变换。 4、伺服系统结构 5、伺服控制的选型步骤 1.确定机械规格,负载、刚性等参数。 2. 确认动作参数,移动速度、行程、加减速时间、周期、精度等。 3. 选择马达惯量,负载惯量、马达轴心转换惯量、转子惯量。 4. 选择马达回转速度。 5. 选择马达额定扭矩。负载扭矩、加减速扭矩、瞬间最大扭矩、实效扭矩。 6. 选择马达机械位置解析度。 7. 根据以上选择马达型号。 6、伺服控制的应用步进控制1、步进电机的工作原理 步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。 2、步进电机的分类 现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。 ●永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度 或15度; ●反应式步进电机一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。 ●混合式步进电机是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度。这种步进电机的应用最为广泛。 3、步进电机系统 1. 步进电机的静态指标术语 a. 相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。 b.拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一 个齿距角所需脉冲数 。 c. 步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。 d. 定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以 及机械误差造成的)。 e. 静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。 2. 步进电机动态指标及术语 a. 步距角精度:步进电机每转过一个步距角的实际值与理论值的误差。 b. 失步:电机运转时运转的步数,不等于理论上的步数。称之为失步。 c. 失调角:转子齿轴线偏移定子齿轴线的角度 。 d. 最大空载起动频率:电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。 e. 最大空载的运行频率:电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。 f. 运行矩频特性:电机在某种测试条件下测得运行中输出力矩与频率关系的曲线称为运行矩频特性 。 4、步进电机选型 1. 步距角的选择:电机的步距角取决于负载精度的要求 。 2. 静力矩的选择:静力矩选择的依据是电机工作的负载 ,一般情况下,静力矩应为摩擦负载的2-3倍内最好 。 3. 电流的选择:由于电流参数不同,其运行特性差别很大,可依据矩频特性曲线图,判断电机的电流。 5、步进电机的一些特点 1. 一般步进电机的精度为步进角的3-5%,且不累积。 2. 步进电机外表允许的最高温度一般在摄氏130度以上 。 3. 步进电机的力矩会随转速的升高而下降。 4. 步进电机低速时可以正常运转,但若高于 一定速度就无法启动,并伴有啸叫声。 5. 步进电机应用于低速场合---每分钟转速不超过1000转。 6、两种电机之性能比较 1. 控制精度不同五相混合式步进电机步距角一般为0.72 °、0.36°交流伺服电机的控制精度由电机轴后端的旋转编码器保证 ,对于带标准2500线编码器的电机而言,其脉冲当量为360°/10000=0.036°,伺服电机精度要比步进马达高。 2. 低频特性不同步进电机在低速时易出现低频振动现象。交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。 3. 过载能力不同步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力 。 4. 运行性能不同步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。 5. 速度响应性能不同步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。交流伺服系统的加速性能较好,以松下MSMA 400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合 6. 矩频特性不同步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,交流伺服电机为恒力矩输出。 综上所述,交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。 变频控制1、通用电机介绍 三相鼠笼式交流电机是感应电机中最常见的一种,其构造及特性如下: 感应电机的构造示意图 电机的构造示意图 电机的特性 2、变频器原理与构成 变频器是能够简单、自由地改变交流电机转速的一种控制装置。改变交流电机转速的方法如下。变频器是通过改变交流电机电源频率实现调速的: 变频器的构成如下: 1. 变流器(整流器)大量使用的是二极管桥整流器,如图1 所示,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。 2. 平波回路在整流器整流后的直流电压中,含有电源6 倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感,采用简单的平波回路。 3. 逆变器同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6 个开关器件导通、关断就可以得到3 相交流输出。 4. 制动回路异步电动机在再生制动区域使用时(转差率为负),再生能量存于平波回路电容器中,使直流电压升高。一般说来,由机械系统(含电动机)惯量积累的能量比电容能储存的能量大,需要快速制动时,可用可逆变流器向电源反馈或设置制动回路(开关和电阻)把再生功率消耗掉,以免直流电路电压上升。 3、变频器的应用目的及用途 变频器和交流电机构成的可调速传动称为变频器传动,其功能用途如下。其中可能互为关联,实际上无明确分类,此表仅作参考。 声明 本号所刊发文章仅为学习交流之用,无商业用途,向原作者致敬。因某些文章转载多次无法找到原作者在此致歉,若有侵权请联系小编,我们将及时删文或者付费转载并注明出处,感谢您的支持! (来源:网络,版权归原作者)
摘要: 大功率半导体模块的发展进化是电力电子系统升级和产业发展的最关键因素。文章根据功率模块的主要应用领域分类,综述了其产品和封装技术的最新进展,分析了新型模块产品的结构和技术特点;然后提出了当前模块封装面临的技术、成本以及新型应用系统要求等方面的挑战,讨论了向高频、高温、高可靠性、模块化等方向发展的挑战;最后对大功率半导体模块的互连及连接技术、集成化和灌封材料、紧凑封装结构的中长期趋势进行了探讨和展望。 0 引言 功率分立器件和模块是大功率半导体器件的主要产品形式,二者 2021 年的总市场规模为 275 亿美元,占全球半导体市场的 4.95%,预计 2026 年将达到 360 亿美元,年均增长率为 5.5% 左右[1-3]。单管分立器件是功率晶体管、晶闸管、金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET) 和小功率绝缘栅双极型晶体管 (Insulated Gate Bipolar Transistor,IGBT) 主要的封装形式,它具有工艺简单、成本低、应用灵活等优势,在中小功率应用系统如消费电子、家用电器、工业驱动等领域具有广泛的应用[2]。功率模块是多个芯片并联结构,对封装技术和材料有更高的要求,是中大功率应用MOSFET 和IGBT 的主要产品形式,在功率密度提升、寄生参数优化、先进技术和材料应用、冷却形式选择、可靠性增强等方面具有较大优势。大功率系统应用对模块需求的持续增加,功率模块对分立器件的市场优势正逐年增大,初步估计到 2026 年,功率模块的销售金额将达到分立器件的 1.6 倍左右[2]。本文将主要讨论大功率 IGBT 模块和宽禁带半导体模块封装技术的近期进展与展望。 功率模块的整体性能和可靠性主要依赖于芯片和封装技术两个层面,而其电流特性、功率密度、温度特性、开关 频 率 、 开关 损 耗 、 安全 工 作 区 (Soft Operation Area,SOA) 等电学性能在较大程度上依赖于芯片技术。目前,中低压 1 700 V 以下IGBT 已发展到第七代,750 V IGBT 芯片的电流密度已提升到300 A/cm2以上,IGBT的饱和电压持续降低,开关频率达到 20 kHz 以上,开关结温Tj 上升至175 ℃,短路能力不断增强[4-8]。 近年来,由于功率半导体芯片的研发和生产投入快速增长,功率模块封装技术和产品的开发节奏也随之加快。在过去的几十年,以 IGBT 模块为代表的功率模块封装技术和产品,也在不断地换代升级:在封装结构方面,持续向紧凑、低热阻、低电感、高效冷却的方向发展;在封装技术方面,先进的互连、连接、端子键合、灌封等技术一直是研发的热点;在封装材料方面,几乎所有的材料如外壳、硅胶、衬板、基板、焊料、树脂等都在持续更新[9-13]。这些方面的不断发展,提升了功率模块的性能和可靠性,基本满足了绝大部分功率系统用户的要求。然而,随着更先进芯片技术的开发,以及新型材料功率半导体器件如 SiC、GaN 芯片的逐渐成熟,芯片的电学性能和热学性能得到了更大提升。目前的功率模块封装技术,已经呈现出不能满足芯片技术对封装需求的趋势,从而限制了芯片性能 (如工作温度、短路能力、开关速度、效率等) 的发挥[14-15]。 本文将主要讨论大功率半导体封装的进展,并对未来的发展进行展望。在新型模块产品和封装技术方面,总结业界的最新进展,并对其产品性能和特点进行分析;基于芯片技术发展需求和客户端不断提出的更高要求,探讨当前大功率半导体模块封装面临的挑战;最后,对功率半导体封装技术发展趋势和前景进行展望。 1 大功率半导体模块封装技术现状与进展 近年来,世界各国政府机构和企业在大功率半导体器件方面的研发和投入迅速增长,新兴的研发机构和企业数量也逐年增加。相对于功率芯片的开发,大功率模块封装研发所需的技术、设备和人员投入相对较小,因而许多研究机构和初创企业选择从封装技术、表征测试、可靠性和寿命、应用技术等方面入手。有关大功率模块的新型封装结构和概念层出不穷,新型的产品和技术也在不断推出,但许多创新的封装结构还处于概念和样品等早期阶段,本文主要关注大功率半导体模块在产品层面的一些最新进展。 1.1 先进开源模块 开源模块 (Open Source) 的概念源于日本日立功率半导体有限公司 (以下简称日立) 于 2013 年提出的nHPD2 系列模块,即下一代高功率密度双开关模块[16]。在推出该模块的同时也提出了标准化尺寸 (最初为 140mm ×94 mm) 和电学接口,用以替代目前的工业级标准模块 (140 mm ×130 mm 和140 mm ×190 mm),具有性能 (如功率密度、寄生电感) 优良、模块化和易于应用等方面优点。概念一经提出,立即引起了各主要功率模块厂商的极大兴趣,后面陆续推出了各自的样品,并完成了相关产品的验证[16-21]。 开源模块分为中低压 (1 200~<3 300 V) 系列和高压 (3 300~6 500 V) 系列2 个版本,图 1 为日立公司最初的开源模块概念设计。其中,高压版本的外壳增加了爬电距离设计,用以提升模块耐压水平;低压版本的直流 (DC+与 DC-) 端子均为 2 个,以承受更大电流。在提升功率密度的同时,一些先进的封装互连、连接和灌封技术已经应用于开源模块之中,如英飞凌科技股份公司 (以下简称英飞凌) 的 XHP2 应用了 .XT技术,三菱电机株式会社 (以下简称三菱) 的 LV100集成 了 基 板 技 术 (Integrated Metal Baseplate, IMB),塞米 控 国 际 有 限 公 司 (以下 简 称 塞 米 控) 的 SEMI‐TRANS 20 采用烧结芯片和 AlCu 引线键合技术,ABB有限公司 (以下简称 ABB) 的LinPak 超声焊接端子和高可靠性焊接技术等[17, 19, 21]。此外,Si3N4衬板和 AlSiC基板 已 普 遍 使 用 , 直接 水 冷 (Direct Liquid Cooling,DLC) 集成针翅基板也逐渐成为中低压模块版本的主要形式,因此模块的热性能和可靠性得到了大幅提升。尽管开源模块产品的性能和可靠性已经完全优于上一代工业标准模块,并且能够大幅降低应用系统回路的总电感,但目前其市场容量仍然不大,一方面是由于模块生产商依然在不断提升上一代工业标准模块的性能和可靠性,以满足客户需求,另一方面是改变现有系统设计的形势还不紧迫。 1.2 新型压接式 IGBT 功率模块 压接式 (Press Pack,PP) IGBT 模块是专门为新一代柔性直流输电系统开发的产品,用以取代可关断晶闸管 (Gate Turn-off Thyristor,GTO)。PP IGBT的概念也来自于 GTO 的封装结构,即晶圆级封装,将电极与晶圆上下表面通过压力接触,具有大电流能力、低寄生电感、短路失效、易于串联应用、双面散热的优点。由于 IGBT 芯片的工艺难度和成品率的原因,采用晶圆级压接封装没有优势。PP IGBT 采用的是小尺寸芯片并联结构,芯片通过各自的刚性或柔性压接部件与外部电极连接,通过外部电极施加压力。目前,高压直流输电 (High Voltage Direct Current,HVDC) 系统的电压已经超过 1 000 kV,需要数百个 4.5 kV 及以上的高压 IGBT 模块串联。PP IGBT 的上下表面为电极的结构,使其容易通过压力串联起来,而传统的 IGBT 模块则很难串联应用。PP IGBT 模块的长期短路失效的优点也使其更适合串联应用,当一些模块失效时,整个系统可以维持较长时间的功能[22]。 早期推出 PP IGBT 产品的厂家有ABB、Westcode、富士电子、东芝、英飞凌等[22],均采用圆形结构。为了提升功率密度和可靠性,日立新能源与 ABB 开发了方形结构柔性压接 StakPak 产品。StakPak 产品的芯片焊接在子模块基板上,模块管盖通过弹簧与芯片上部接触,并对其施加压力,每个模块由数个子模块单元并联构成,子模块共用管盖电极和底部电极。图 2 是StakPak 子模 块 结 构 示 意 图 和 5 200 V/3 000 A产品[23-24]。 株洲中车时代半导体有限公司 (以下简称中车时代半导体) 开发了具有自主知识产权的 PP IGBT 模块产品,并成功应用于国内柔性 HVDC 工程,图3 是其PP IGBT 模块子单元和模块产品。该 IGBT 的芯片通过双面银烧结技术与钼片连接,然后组装成子单元,子单元与模块管盖电极通过柔性压力接触,实现并联。银烧结工艺技术提升了模块的长期可靠性,柔性压接提高了芯片压力的均匀性,有助于提升芯片电学性能和热学性能的一致性。目前,中车时代半导体的 PPIGBT 产品的电压等级已经达到了 6 500 V,是市场上的第一家达到该电压等级的产品[8]。 1.3 先进工业级 IGBT 模块 62 mm ×152 mm IGBT 半桥模块被认为是最成功的IGBT 模块产品之一,如英飞凌 EconoDUAL 系列产品和其他半导体厂家同类封装的产品。该类半桥模块具有功率密度高、可靠性高、应用简单、成本低等优势,在工业、新能源和商用农用车领域的应用非常广泛。 目前,这类封装的 1 200 V 和1 700 V IGBT 模块的最大电流已经达到 900 A,相较于早期提供的 450 A 产品,功率密度最高提升了 1 倍,可满足新能源领域更高功率的需求。此外,在采用最新的 IGBT 芯片和 FRD 芯片提升电学性能的同时,模块的封装材料技术也在进行升级,如主端子与衬板连接以及衬板互连采用铜线、预涂敷相变导热硅脂材料 (Phase Change Thermal Inter‐face Material, PCTIM)、 IMB 和环 氧 树 脂 灌 封 材 料(Epoxy Molding Compound, EMC)、 采用 PressFIT 辅助端子等,以满足大电流输出和更高可靠性的要求。近 2 年,62 mm ×152 mm 封装 IGBT 模块产品的升级主要有以下 2 个方面: ①采用黑色外壳无基板封装结构,如图 4 所示。由于产品底部没有基板,实现了“结-壳”热阻 (RthJ-C)、重量和成本的降低。应用时通过外壳上的安装孔将衬板与散热器压装在一起,并且对主端子结构也进行了优化,主端子和辅助端子都通过超声焊接技术与衬板连接,从而提高了电流能力、热性能和机械可靠性,大幅降低了母排端子的寄生电阻和最高温度[25-27]。仿真结果显示,在 2.5 kHz 的开关频率和强迫风冷条件下,电流输出能力比标准模块提升了 9%,而在更高频率下其优势更加明显[27]。 ②基板集成铝带结构 (Wave),可实现直接水冷散热[28],其产品如图 5 所示。通过热仿真和计算流体力学(Computational Fluid Dynamics,CFD) 仿真设计铝带的结构、尺寸、形状、布局,以实现最低的“结-冷却液”热阻 RthJ-F 和降低冷却液进出口之间的流阻。铝带键合在普通基板背面通过引线键合完成,工艺比较简单,相对于直接水冷针翅基板,可以大幅降低成本,并且重量降低很多,同时在应用中不需要涂覆导热硅脂,节省了成本,降低了 RthJ-F,从而提升了模块电流能力 , 增强 了 产 品 可 靠 性[28-29]。 1 200 V/900 A 规格IGBT 模块的 RthJ-F为 0.08 K/W 左右,与预涂导热硅脂材料、没有铝带的标准模块的“结-散热器”热阻 RthJ-H0.07 K/W 相差不大,而后者在应用中还要考虑散热器的热阻影响。试验结果显示,在输出电流 500 A 和冷却水流量 15 L/min 的条件下,集成铝带结构的 IGBT 最高结温降低 25 K,而且温度波动很小;在相同的结温下,输出电流最高增加 20%~30%,寿命增加了 5 倍,模块结温和寿命比较如图 6 所示[29]。 1.4 汽车级 IGBT 模块产品进展 电动汽车电机控制器对大功率半导体模块的更高要求是汽车级 IGBT 模块技术不断发展的主要驱动力之一。基于性能、可靠性、寿命提升、成本降低的持续追求,使汽车级 IGBT 模块成为功率模块结构、技术和材料发展的主要推动力量。表 1 是汽车级 IGBT 模块产品验证标准,在温度冲击、机械振动和冲击、功率循环寿命等方面的标准比工业级模块更加严格[30],表 2 是汽车模块产品代次发展及其主要特征。 目前 , 6 开关HybridPACK Drive 直接 液 体 冷 却IGBT 模块及其同封装产品已经成为中高端电动汽车驱动器的主流产品,一些厂商以该模块形式进行了宽禁带功率器件 (如 SiC MOSFET,GaN HEMT) 封装[31]。在采用新型结构、先进技术和材料的基础上,汽车IGBT 模块的最新产品形式主要有以下 2 个方面: 一是转模灌封模块。。转模灌封技术广泛用于集成电路、分立器件的封装,但直到近年才被用于大功率IGBT 模块封装。转模灌封的优点:①工作温度更高,目前 EMC 材料的最大玻璃化温度达到 200 ℃以上,因而比硅胶更适用于高温封装;②EMC 材料的热膨胀系数 (Coefficient of Temperature Expansion,CTE) 比硅胶低一个数量级,目前已经能做到 15 ppm/K 以下,在温度变化过程中,EMC 材料半导体芯片、互连金属、绝缘衬板的热应力更小,从而提高了模块的“热-机械”稳定性和寿命;③转模灌封的防潮能力强,EMC材料对湿气的抵抗能力更强,保证了模块在潮湿工作环境下的长期可靠性;④抗机械振动和冲击的能力更强,EMC 材料经固化后强度很高,并与端子、衬板等材料具有很强的结合性,因而减小了机械振动和冲击对模块的影响,提高了模块的可靠性。目前,主要的IGBT 模块厂商都推出了转模产品,主要的应用领域是电动汽车,如图 7 [32-36]所示。转模封装的设备和工艺要求比传统硅胶填充更高,需要定制化的工装,因而工艺过程较长,成本较高。此外,转模封装主要适用于无基板结构和尺寸较小的模块产品,而当前主要拓扑结构是半桥结构。这是因为在灌封后,需要对 EMC 在高温下进行较长时间的固化,此过程使得基板形成很大的“热-机械”应力,造成基板变形。但转模灌封是大功率密度、高可靠性、轻量化功率模块封装的主要技术 方 向 , 是先 进 新 型 宽 禁 带 (Wide Band Gap,WBG) 大功率模块的主要产品形式。 二是先进互连双面散热模块。传统 IGBT 模块采用铝线键合互连,主要通过衬板基板通道散热,在电流能力、散热能力和功率循环可靠性等方面存在局限性,其中键合引线脱落和根部断裂被认为是大功率模块失效的主要模式。先进互连技术旨在增强互连结构电流通过能力和可靠性,降低失效发生率。目前,比较广泛应用的先进互连技术主要包括:①平面互连,通过上层衬板或 PCB 形成电路;②直接导线键合 (Direct-Lead Bonding,DLB) 技术,通过主电流端子与芯片连接形成互连;③铜线键合,采用电流通过能力、散热能力 更 强 和 CTE 更低 的 铜 线 实 现 互 连 ; ④ 金属 夹(Clip) 互连技术,用于芯片间、芯片与衬板的互连,金属夹不与主端子一体化[37-41]。 通过平面互连技术,如平面金属层或衬板结构,可以实现双面散热封装。模块的热损耗可以向上、下 2个方 向 传 输 , 达到 双 面 冷 却 (Double Side Cooling,DSC) 的效果。DSC 结构的RthJ-C 比同规格的单面散热结构降低 30% 左右[41],从而大幅降低芯片结温 Tj,提高热稳定性。DSC 模块采用转模灌封技术,具有双面冷却和转模封装的诸多优势。图 8 是一款典型的 DSC转模模块及其剖面结构图,用于电动汽车电机驱动。当前的 DSC 模块一般不是直接水冷,在应用中需要通过导 热 材 料 (或通 过 焊 接 工 艺) 与外 部 散 热 器接触[41]。 1.5 先进 SiC 模块产品 为了发挥 SiC 材料在电学和热学方面的优势,大功率 SiC 模块封装的主要方向包括:①直流母排间寄生电感降低至 5 nH 以下;②提升模块最高工作温度Tj max至200 ℃以上;③降低 RthJ-C和 RthJ-F;④提高功率密度、增强电流能力和长期可靠性。目前,市场上的 SiC 模块产品主要是对 Si 基IGBT 模块产品形式的延用和小范围优化 , 如 HybridPACK Drive、 62 mm 封装 系 列 产 品 、Easy 系列、平面转模结构等[42-46],以及采用传统结构和技术的产品,如 Rohm、Wolfspeed、富士电子、三菱等公司的产品[33, 47-49]。专门针对大功率 SiC 器件的封装还不多见,仍未形成占主导优势、广泛被市场接受的标准 SiC 模块产品。 针对性能和可靠性要求最高的汽车控制器应用,塞米控公司推出了当前市场上最具竞争力的汽车级SiC模块产品 eMPack[50-51],其外观如图 9 所示。eMPack 采用塞米控的 SKiN 技术[37],其芯片互连采用双层柔性PCB 实现,分别形成功率和栅极回路,降低了寄生电感;芯片的上下表面通过银烧结技术分别与 PCB、绝缘衬板连接;冷却方式灵活,可采用直接水冷或客户定制的冷却结构 (如封闭铝散热器结构);外壳通过压力结构系统 (Direct Pressed Die,DPD) 将压力施加于芯片和衬板之上,使 PCB 与芯片、衬板与散热器紧密接触,从而可以减小导热硅脂厚度,达到减小热阻的效果。eMPack的剖面图和 DPD 系统原理如图 10 所示。其母排和辅助端子通过激光焊接技术与衬板结合,激光焊接技术对衬板无损伤,具有接触电阻低、焊接速度快、安装体积小、成本低、可靠性高[52]等优点。 eMPack 模块采用的是 6 开关三相逆变电路的拓扑结构,适用于 1 200 V 及以下电压等级。目前的最高电流等级是有效值 900 A,输出功率最高达 750 kW,模块外形尺寸为 153 mm ×111 mm,主功率回路总寄生电感降低至 2.5 nH。该模块已经获得汽车生产商的极大兴趣和认可,并与德国一家大型车企签订了10 亿欧元的订单,将于 2025 年批量供货[53]。为了保证 SiC 芯片的供应,塞米控已经与意法半导体、罗姆公司签订了供货 合 同 , Rohm 公司 也 获 得 了 eMPack 模块 的 生 产许可。 在高压 SiC 模块方面,3 300 V/750 A 和 3 300 V /1 000 A 半桥模块产品已经成功推出[54],并在轨道交通牵引驱动系统获得了初步应用。该模块采用低压开源模块形式,主要在母排形状和布局方面进行了优化,直流回路总寄生电感在 10 nH 以下,采用铜线键合、芯片银烧结和衬板扩散焊接技术、Si3N4 衬板和 AlSiC 基板,如图 11 所示。在工业和新能源应用领域,模块的效率、体积、重量和成本成为关键指标,新型的 SiC 模块产品尚未出现。 近期,已经相继报道了平面封装转模 SiC 模块产品,如意法半导体公司的汽车级 STPAK2 双面冷却模块,该模块通过铜钼金属柱将芯片表面与上层 Si3N4绝缘衬板互连,芯片上下表面、金属柱与上层衬板之间都通过银烧结连接,如图 12 [55] 所示。安森美公司也推出了汽车级转模双面冷却 SiC 模块,寄生电感为 6.5nH,芯片与 AlN 衬板通过烧结连接,如图 13[56] 所示。DENSO 的双面冷却 SiC 模块已经批量应用于丰田的Mirai II 的升压控制器中,其结构与普通双面冷却结构类似,但未采用烧结技术,如图 14[57]所示。其他已经形成产品的新型 SiC 模块还有日立能源的RoadPak[34]、丹佛斯的 DCM1000X[35]等。 650 V 功率 GaN HEMT 器件主要应用在功率较低的领域,如消费电子、汽车充电机和 DC-DC 变换器等,其产品形式主要是分立器件。由于大功率的电机驱动应用尚不成熟,新型的 GaN 封装形式仍未形成,主要是采用传统的 IGBT 模块结构和技术,如 VisIC、GaN Systems 等公司的产品[58-62]。目前,GaN HEMT 芯片表面金属化布局不适用于平面互连,一般都采用引线键合形式,当应用于超高频率时,降低寄生电阻、电感和电容,实现芯片间栅极回路寄生参数均衡和动态均流都是需要重点考虑的问题。此外,对平面导电器件,还需关注背面接地设计。 1.6 新型航空功率半导体模块 航空功率系统是功率半导体器件新兴应用领域之一,随着世界范围内清洁太空计划的推进,多电飞机(More Electric Aircraft,MEA) 的研发日渐增多。MEA已经成为航空科技的重要发展方向,它将机载二级能源系统 (如液压、气动能源系统) 由电力系统替代,从而提高燃油经济性、实现轻量化、提高可靠性和可维护性。MEA 的电力系统包含发电、配电和用电等一系列 功 率 等 级 不 同 的 AC/DC、 DC/AC 系统 。 目前 ,MEA 的标准直流系统电压是±270 V,并有提升到±540V 的趋势。鉴于 MEA 对系统效率、体积和重量等方面的要求,1 200 V SiC MOSFET 成为航空应用的主流器件,随着直流电压的提升,1 700 V 或三电平 1 200 V SiC 模块将逐渐得到应用。 2022 年,Microchip 公司推出了航空标准 1 200 VSiC 模块 BL 系列,具有多种拓扑结构,电流最高达到145 A,可以满足 0.1~20 kW 的各种电源系统。图 15 是BL 系列模块的典型外观、尺寸和性能参数。该系列模块采用厚铜 Si3N4 衬板、应力缓解结构母排端子设计、无基板结构,具有体积小、重量轻[63]等优点,图 16 是该系列模块的内部结构图。图 17 是中车时代半导体开发的 1 200 V 三电平中点箝制 (Neutral Point Clamped,NPC) 航空 SiC 功率模块,输出电流有效值/功率为 250A/100 kW,主要优点是优化了各主电流回路的寄生电感 , 实现 了 主 电 流 回 路 寄 生 参 数 均 衡 , 以及 芯 片栅极 回 路 的 电 感 均 衡[64] 。 目前 , 航空 功 率 模 块 产品的 验 证 标 准 还 没 有 建 立 , 一般 参 照 航 空 系 统 标准RTCA/DO-160G,如高湿高温(95±4)%RH,长时间过压 170 kPa,15 s 内快速减压63.66 kPa,以及机械冲击和振动等方面的标准,其余验证标准参照工业级模块[63]。 2 大功率半导体模块封装面临的挑战 目前,世界各国都在发展低碳经济,实现电气化清洁能源、高效的能量转换等成为能源行业不断追求的目标,电力电子系统的应用和性能对上述目标的实现具有重要作用。其中,功率半导体模块是能量传输、转换和控制应用等电力电子系统的核心器件,其性能、可靠性和成本对整个系统具有关键影响。随着新兴行业 (如电动汽车、新能源、 HVDC 系统、多电飞机等)对电力电子系统要求的提升,大功率半导体模块的封装面临着以下挑战。 2.1 先进封装与产品成本的矛盾 在提升模块的功率密度、工作温度和可靠性等方面,业界已经开发并储备了一系列的先进封装方案和技术,并且一直在探索和完善之中,如新型互连与烧结工艺、高温灌封、压力接触、双面冷却等。相比于传统的封装结构和技术,这些先进方案和技术都在一定程度上增加工艺的复杂性、降低可制造性,并影响成品率,从而导致模块产品的成本增加。表 3 是当前主要先进技术的优势及其对产品制造和成本的影响。对功率模块供应商来说,需要根据客户的具体需求,通过结构、先进技术和材料的优化组合,开发相应的产品。 2.2 高频封装与回路寄生电感 回路存在杂散寄生电感是提高开关频率的最大障碍,也是栅极误导通的主要原因。模块间主回路寄生电感和模块内各芯片栅极回路寄生电感的不均匀,将导致模块和芯片不均流,从而引发失效。高开关频率是先进 Si 基和新型宽禁带 (WBG) 功率器件的主要优势之一,也是电力电子系统用户追求的主要目标之一。对功率模块而言,为降低开关损耗,减小功率回路和栅极回路的寄生电感、保证各芯片栅极回路电感的均衡 , 是当 前 及 下 一 代 封 装 技 术 面 临 的 主 要 挑 战 之一[65-67]。表 4 是功率模块寄生电感的来源及其对性能的影响。 2.3 高温封装技术 Si 基 IGBT 芯片的最高工作温度为 200 ℃以上,而第三代 WBG 器件的工作 Tj 则可达 300 ℃以上。然而,受封装技术限制,目前主流功率模块产品的最高结温Tj max仍然被限制在 175 ℃。提高 Tj可降低对模块封装结构、材料热特性和散热能力的要求,但对高温封装技术和耐高温材料的选择提出了更高的挑战。因此,高温封 装 技 术 一 直 是 业 界 重 点 关 注 和 研 发 的 方 向 之一[67-69] ,表 5 为目前高温封装技术所面临的挑战及其技术解决方案。随着先进互连和连接技术的发展,封装技术将不再是高温封装的主要限制,而新型高温材料则成为提高模块 Tj的关键因素。 2.4 模块化和集成智能化 模块化和集成智能化封装是提升可制造性和可靠性,降低封装和应用成本的有效方案[70]。基于应用端的要求和电压等级的不同,需要储备完整的封装技术和材料体系、开发不同开关频率等级的小型化栅极驱动和系统控制技术、集成监测模块性能和健康状态的运维技术、考虑最优的封装形式和技术平台,形成标准模块化体系下的系列化产品。 2.5 新型应用系统的需求和挑战 早期的功率 IGBT 模块基本采用标准的封装结构和技术,应用范围主要是家用电器和工业变频等领域,而大容量的功率系统 (如轨道交通、输配电等) 则由晶闸 管 主 导 。 随着 新 型 芯 片 (IGBT 或 SiC MOSFET等) 和封装技术的快速进步,功率模块覆盖的应用领域越来越广泛,除替代上述应用领域的晶闸管模块外,还在电动汽车、新能源、航空航天等行业得到广泛应用。 不同类型电力电子系统虽然对功率模块的要求具有较大的共性,如性能提升、小型化、长期可靠性、高 SOA、电磁兼容、低成本等,但由于运行环境和工况的差别,不同系统会有特殊的需求,其产品标准也存在一定差异,在功率模块的开发过程中,需要特别关注。表 6 是新型应用系统对功率模块的特别需求。 3 大功率半导体封装技术展望 面对未来先进 IGBT 芯片和 WBG功率芯片封装的需求,需要在封装结构、封装技术和材料等方面不断进行升级和突破。本文从以下 5 个方面对大功率半导体封装的技术趋势进行展望。 3.1 先进互连技术 对于功率开关器件,互连技术是提升电流能力、降低寄生电感和提高可靠性的关键。对非转模形式的大功率模块,先进的互连技术主要有铜线键合、DLB、DTS、柔性 PCB、铜夹 (Cu Clip) 等技术[37-41]。表 7 是这 5 种技术在性能、工艺、可靠性和成本等方面的比较。由表 7 可知,铜夹技术具有一定的整体优势,通过采用铜钼合金可降低 CTE,从而减小结合层所受的热机械应力,其可靠性会进一步增加,有望成为未来大功率半导体封装的主流技术。 3.2 端子连接技术 端子连接是大功率半导体模块可靠性主要弱点之一,其失效机制主要为由于“热-机械”应力引起的连接层退化失效,以及机械冲击和振动造成的端子脱落或断裂。因此,端子连接的可靠性对高温度冲击和高机械应力的应用场景尤其重要,如电动汽车、新能源、航空等。当前,超声焊接 (Ultrasonic Welding,USW)已成为传统结构大功率模块母排和辅助端子的主流连接技术,而对无基板模块则存在工艺控制困难。 对于无基板模块,无压力烧结、TLPS 和激光焊接将成为功率端子与辅助端子主要的连接技术。在平面转模封装中,端子以引线框架的形式通过烧结或扩散焊接技术与衬板结合,其温度稳定性高。转模灌封能够加强其对机械冲击和振动的抵抗能力,而且其工艺与其他工艺步骤兼容。相对于 USW,烧结或扩散焊接的过程更快、成本更低,所以在传统有基板模块中,也有较大应用前景。激光焊接已经成功应用于大功率汽车模块及其模块端子与外部电路的连接,它的主要优势在前文已经提及。目前,激光焊接技术的主要限制是端子的焊接部位不能太厚,需要专门设计[52, 71-72]。 3.3 新型基板及灌封技术 集成金属基板 IMB 有 3 层结构。其中,上层薄铜可用于电路拓扑布局,中间层是一层厚度约为 0.1 mm的绝缘树脂,下层是一层较厚的铜金属层,用于支撑和散热。其优势是集成了衬板和基板的功能,具有降低热阻、整体厚度薄、体积小、重量轻、成本低等优点。通过在背面金属层集成针翅结构,实现直接水冷冷却,进一步提升模块的性能和可靠性。IMB 可以与高温 EMC 灌封技术很好结合,其模块整体优势和可靠性已经得到验证[73],将有望成为高温、高性能、紧凑封装的主要技术方向之一。 集成 金 属 衬 板 (Integrated Metal Substrate, IMS)也有 3 层结构,其中上层用于金属电路布局,中间层是传统陶瓷层,下层是较厚的金属层,也可集成针翅结构。采用 IMS 不须基板,降低了模块的热阻、体积、重量和成本。采用 AlN 陶瓷层,模块的热性能和可靠性更具优势[74-75]。IMS 与高温 EMC 灌封结合的紧凑型高功率模块产品也是近几年的研发重点。 3.4 先进冷却结构 直接水冷散热已经成为汽车 IGBT 模块的标准产品,其应用系统非常成熟,下一代工业标准模块的趋势也是直接冷却结构[28-29]。双面散热 DSC 转模模块的研发已经持续了近十年,其结构和技术已基本定型,产品也相继推出[55-57]。然而,DSC 模块的应用还未普及,主要原因是其性能优势不是很明显,应用相对比较复杂。DSC 转模模块未来的发展目标是双面直接水冷,在模块上下表面金属层上集成针翅结构或类似结构,这将大幅降低模块的总热阻、提高模块的电流能力和长期可靠性,充分发挥先进芯片的优势,对高端系统用户的意义很大。 3.5 3D 封装结构 低电感、高功率密度、紧凑封装的长期解决方案是采用多层芯片堆叠嵌入式 3D 封装结构。通过在垂直方向上增加芯片层数,将芯片连接在衬板或功率端子上,同时嵌入电容、电感等无源元件,其采取的常用冷却技术是嵌入衬板或芯片的微通道[76-77]。在当前的DSC 模块中,只有 1 层芯片,其上表面有金属柱互连,一般被认为是实现 3D 封装的过渡形式。3D 封装一般采用烧结、转模和倒装芯片 (Flip Chip,FC) 技术。FC技术在小尺寸、小功率IC 封装中应用已经非常成熟,其关键是倒装芯片的位置控制和栅极连接,采用自动贴片机和栅极焊接 (或烧结) 技术,可以实现这个工艺。虽然大功率 3D 封装技术还在探索之中,距离产品及应用还有较长的时间,但将成为先进封装尤其是高频、高功率密度 WBG 器件封装的趋势之一。 4 结束语 随着 IGBT/FRD 芯片性能和工作温度的不断提升,以及高频、高温 WBG 功率芯片产品的成熟和强劲的市场需求,对先进封装技术的探索日益紧迫。小型化、高效率、高频、高温、高可靠性和低成本是大功率半导体器件用户的持续追求,也是功率半导体业界竞争的重点。对于这些指标的提升,封装技术发挥着至关重要的作用。来自电动汽车、新能源发电、多电飞机等中高端用户的要求,促使新的封装结构、先进封装技术和材料应用不断呈现。 本文从模块产品和封装技术层面介绍了功率半导体业界在新型封装方面的进展,对新型工业、新能源、汽车、WBG 以及航空功率器件模块产品进行了讨论和分析,讨论了当前大功率半导体模块封装面临的系列挑战,同时从模块封装技术 (如互连、端子连接及灌封)、新型结构和材料如集成基板、新型散热和紧凑封装等方面,对大功率半导体封装进行了探讨和展望。
目录 1.测试系统原理 2.各主要模块的实现 2.1采集模块的实现 2.2中央处理模块实现 3.测试内容 4.实验结果 随着科技的进步,电动汽车技术也得到了迅速的发展;相比内燃机汽车,电动汽车具有零排放、高能量效率、低噪声、低热辐射、易操纵和易维护等优点,将是未来汽车发展的方向,也是现行研究的热点。电动汽车的动力电池有如下三类:燃料电池、蓄电池和超级电容,而对于车载用电源,为达到较高功率和能量,超级电容往往采用多块单体串联的形式。但随着电容串级的提升,电池整体电压也随之提高,然而这样高峰值的电压引起的波动会带来强烈的电磁干扰,为电容组件的检测带来很大的困难。同时由于串联超级电容往往采用大电流充放电(通常在50A~150A之间),电压、电流变化十分迅速,这样迅速的充放电速度和幅度带来的噪音影响也是十分巨大。因此针对超级电容特殊的工作状况,本文给出了一种利用单片机设计的超级电容电池测试系统方案。 1.测试系统原理 超级电容管理系统可实现对超级电容工作电流和电压的实时采集,整体结构框图如图1所示。系统共由3个主要模块组成:现场电压、电流、采集与调理模块(即采集模块),信号隔离与MCU信号处理模块(即中央处理模块),电源管理模块。采集模块内,霍尔电压、霍尔电流传感器分别对超级电容电压和电流进行现场采集,采集信号经过仪用放大,然后转化为4mA~20mA电流信号并发送到中央处理模块。中央处理模块内,采集模块发送的4mA~20mA电流信号,经过电流电压变换后,再进行隔离放大、AD转换并送到MCU;MCU将数据处理后通过CAN接口传送到上位机;当检测到数据异常时MCU输出故障信号,以便工作人员能即时采取措施。电源管理模块为各功能模块提供稳定隔离的电压。增加RS232通信串口,以便MCU程序烧录。 图1 超级电容管理系统整体结构图 2.各主要模块的实现 本测试系统分别采用四块电路板,以实现三大功能模块——采集模块、中央处理模块和电源管理模块。即电压采集与初调理板、中央处理板以及电源板。下边着重介绍电压、电流采集模块和中央处理模块的实现。 2.1采集模块的实现 采集模块包括总线电流的采集、总线电压的采集两个部分,图2即为电流采集原理图。采用霍尔电流传感器隔离被测系统,比传统的基于电阻采样的电流分压电路精度高,安全性能好,抗干扰能力强。本文选用的是基于磁补偿原理的霍尔闭环电流传感器CSNK591,测量范围±1200A,线性精度达到0.1%,总体精度达到0.5%,响应速度小于1μs,完全满足了系统的要求。采集信号经精密电阻转变为电压信号,再由仪用放大器放大为±5V双极性电压信号。系统选用AD620BR仪用放大芯片,该芯片在增益较低时具有较大的共模抑制比(G=10时,共模抑制比最小为100dB),能较强地抑制由于温度、电磁噪声等因素引起的共模干扰。放大信号通过OP27GS芯片抬升至0~10V单极性信号,经过射极跟随器送至变送器XTR110KU,转为4mA~20mA的电流信号送到中央处理模块。之所以将采集信号转变为4mA~20mA电流信号,是考虑到与工业接口标准的统一,并且采用电流传输抗干扰能力强。 图2 电流采集模块原理图 总线电压的采集同样选用基于磁补偿原理的闭环霍尔电压传感器VSM025A,实现原理与电流采集相同。 2.2中央处理模块实现 中央处理模块是测试系统的核心部分,包括MCU和AD单元、模拟信号二次调理单元、故障输出单元和CAN接口单元等,如图3所示。 图3 电压信号调理支路 采集模块输入的4mA~20mA电流信号首先经过模拟信号二次调理单元,进行信号的变送、隔离、滤波和放大。模拟信号的隔离方式很多,常用的方法为隔离放大器、线性光耦以及电压频率转化,其中隔离放大器和线性光耦隔离电压高,抗干扰能力强,线性度高,但线性光耦隔离线路复杂,需要调整的参数较多,并且当输入电压比较小时,线性度较差。本文选用的是高精度ISO124U隔离运算放大器完成输入模拟信号的隔离,隔离后的信号经5阶Butterworth低通滤波MAX280电路过滤高频干扰,随后通过一射极跟随器送出。 二次调理后的采集信号,经过12位高速AD7891送至MCU。MCU对数据进行处理并将数据通过CAN接口传送到上位机。单片机选用STC系列8位高速单片机STC89C58RD+。该单片机具有强抗干扰性,4kV快速脉冲干扰(EFT)和高抗静电(ESD),可通过6000V静电,很好地满足了超级电容高电压大电流的工作环境。该单片机可实现6时钟模式,在本系统采用24M晶振情况下,单片机工作频率可达到4MIPS,相当于普通51系列单片机运行速度的4倍。 另外,测试系统设置3通道故障诊断输出,能显示欠压、过压、过流等状态。测试系统与上位机采用抗干扰能力强、稳定性好的CAN通信方式,保证测试系统送入上位机数据的可靠性。 实际系统有模拟±15V,数字±5V,模拟±12V供电需求,电源管理模块在提供系统各部分所需电压的同时,进行模拟、数字电路隔离,从而避免两类电压互相影响。各部分电源入口都增加了TVS保护,防止浪涌电压对系统的损坏。同时在诸多电源入口处设置相应的滤波电路,如在AD供电入口处增加了π形滤波电路,较好地消除电源信号对所供电路的干扰。 而且外部连线均采用屏蔽线,能较强地屏蔽线路传输中的电磁干扰。所有电流板使用型材铝盒包装,采用标准航空接头与外界联线,这样在保护电路板的同时隔离外界磁场。 3.测试内容 实验选定以70A和150A两种模式对两组串联的超级电容组件进行充放电测试。首先,对电容进行恒流充电,当总线电压达到300V时,转为恒压充电,当总线电流降低到10A时进行70A恒流放电,如此循环测试5个周期。 4.实验结果 图4、图5、图6给出了两种情况下的测试曲线对比。其中,图4表示70A和150A两种标准测试情况下,电流的变化曲线。图5、图6表示两种情况下,电压曲线特性。可以看出两者的匹配程度很好。电压测试精度高于电流测试精度,这是由于一方面充放电系统本身电压比电流控制精度要高,另一方面电流传感器安置在电容箱体内并且紧靠单体电容,电容充放电时产生的噪声干扰比较严重。同时,霍尔电流传感器孔径较大,穿过电流总线后仍有一定空隙,在一定程度上影响了测试精度。对比各组电流曲线,可以看出随着电流的增大,测试结果的相对误差减小,但绝对误差保持一致,不超过3A。 图4 70A与150A充放电电流测试对比曲线 图5 70A充放电电压测试对比曲线 图6 150A充放电电压测试对比曲线 总结 以上就是基于单片机的车载超级电容测试系统设计介绍了。该系统采用基于磁补偿原理的霍尔闭环电流、电压传感器采集总线信号,以抗高压脉冲干扰的STC51高速单片机进行信号处理,并采用仪用放大、电流传输、模拟信号隔离、5阶低通滤波等措施,尽可能地减少信号传输过程的噪音。通过对超级电容组件充放电测试,表明本系统具有抗干扰能力强、检测精度高等优点,能很好的满足车载超级电容高电压大电流环境下的测试要求。