铜引线键合由于在价格、电导率和热导率等方面的优势有望取代传统的金引线键合, 然而 Cu/Al 引线键合界面的金属间化合物 (intermetallic compounds, IMC) 的过量生长将增大接触电阻和降低键合强度, 从而影响器件的性能和可靠性。 针对以上问题, 本文基于原位高分辨透射电子显微镜技术, 研究了在 50—220◦C 退火温度下, Cu/Al 引线键合界面 IMC 的生长问题, 实时观测到了 Cu/Al IMC的动态生长及结构演变过程。 实验结果表明, 退火前颗粒状的 Cu/Al IMC 分布在键合界面, 主要成分为 Cu9Al4, 少量成分为 CuAl2。退火后 Cu/Al IMC 的成分是: 靠近 Cu 一端为 Cu9Al4, 远离 Cu 的一端为 CuAl2。同时基于原位观测 Cu/Al IMC 的动态生长过程, 计算得到了 Cu/Al IMC 不同温度下的反应速率和激活能, 给出了基于原位实验结果的Cu/Al IMC的生长公式, 为优化Cu/Al引线键合工艺和提高Cu/Al引线键合的可靠性提供了指导。 一、介绍 引线键合起源于20世纪60年代初, 被广泛应用于芯片与基板间的电气互连和芯片间的信息交互。 与传统互连材料金(Au)相比, 铜(Cu)丝具有价格便宜、电导率和热导率高、机械性能更优等优势 , 有望取代Au广泛应用于引线键合。 然而,自1992年美国国家半导体公司成功将Cu 引线键合应用于低端电子产品至今, 由于对Cu引线键合机理和可靠性研究的不充分, 工业界仍对大规模应用Cu丝互连采取保留态度 , 因而对Cu引线键合的研究变得迫切。 在芯片封装流程中, 引线键合后需要进行环氧树脂塑封, 这种后成型封装通常需要在175—200◦C温度下退火4—8h。 Cu/Al引线键合界面在键合和退火过程中由于原子扩散会形成金属间化合物。根据Cu/Al二相图在365 ◦C下Cu/Al IMC共有5个稳定相: CuAl2(θ), CuAl(η2),Cu4Al3(ζ2),Cu3Al2(δ),Cu9Al4(γ1)。 近年来, 大量工作集中研究了Cu/Al键合界面IMC和空洞生成,过量的Cu/Al IMC 和空洞不但会增加接触电阻还会降低键合强度。 早期的研究主要基于光学显微镜、 Micro-XRD或者SEM-EDX, 认为键合后(asbonded)键合界面没有Cu/Al IMC生成, 并得到退火后IMC主要有CuAl2, CuAl和Cu9Al4,基于Micro-XRD分析认为150—300 ◦C下Cu/Al IMC的主要成分为Cu9Al4, 并基于SEM研究得到Cu/Al IMC生长速度是Au/Al IMC 生长速度的10%, 给出了IMC生长公式。 随着电子显微镜发展, 一些工作开始利用高分辨扫描电子显微镜(SEM)和聚焦离子束系统(FIB)对Cu/Al IMC在退火处理下从键合后的几纳米生长至几微米的成分演变进行了研究。近年来, 越来越多的研究开始采用高分辨透射电子显微(TEM)技术, 这些工作直观、精确地获得了一些Cu/Al IMC晶格结构的信息,认为175 ◦C, 200 ◦C和250 ◦C退火条件下Cu-Al IMC由CuAl2 转化为Cu9Al4。 然而,目前关于Cu/Al IMC生长的机理依然不够明确,需要进一步深入研究。同时, 综上所述的所有研究方法均采用非原位研究, 即对一批样品进行不同退火温度和退火时间处理, 然后再进行SEM和TEM表征。与非原位实验研究相比, 原位透射电子显微术(In-situ TEM)基于透射电子显微镜, 结合多功能样品杆(对样品进行多外场负载、力电热性能测试等), 可以对材料实现原位处理和同步观测。因而, 原位透射电子显微技术是研究Cu/Al引线键合界面在多种处理环境中结构演化过程和机理的先进方法。 基于In-situ TEM研究了Cu/Al引线键合界面在50—220 ◦C退火下Cu/Al IMC 的结构演变。 通过原位加热观测, 我们分析了Cu/Al IMC的结构演变, 并计算得到了Cu/Al IMC反应速率, 推导得到了原位加热下Cu/Al IMC生长公式。 二、实 验 如图 1 (a)所示, 直径为22 µm的纯Cu线热超声键合到1.5 µm厚的Al 金属盘, 键合压力为25—35 gf, 超声功率为120—150 mW, 键合温度为180 ◦C, 键合后进行塑封。 沿键合球中心使用传统研磨和抛光, 然后采用聚焦离子双束(FIB dualbeam)减薄, 制备厚度小于100 nm的TEM样品。图 1 (b)所示的是FIB制样所得TEM样品的结构图, 而图 1 (c)是在退火前样品的Cu/Al引线键合界面颗粒状IMC的形貌。 图 1 (a) Cu/Al 引线键合结构示意图; (b) FIB 制样所得原位 TEM 样品结构图 (标尺 = 2 µm); (c) Cu/Al 引线键合界面退火前颗粒状 IMC 形貌 TEM 图 (标尺 = 100 nm) 采用加速电压为300 kV带球差校正的透射电子显微镜(FEI Titan 80-300)对FIB样品进行原位表征。 采用Gatan 628单倾热杆进行原位加热, 加热温度从50—220 ◦C逐渐升高, 每个温度下恒温时间超过1 h, 总共持续24 h, 具体加热过程见表 1 。 表 1 Cu-Al 引线键合 TEM 样品的原位退火温度和时间 三、结果与讨论 1 Cu/Al IMC生长原位观测 图 2 原位实时观察 Cu/Al 引线键合界面 Cu/Al IMC 热生长动态过程 (a)—(i) 分别为所标注的退火温度和退火时间下的 TEM 图 ((a)—(f) 中标尺 = 20 nm; (g)—(h) 中标尺 = 50 nm; (i) 中标尺 = 0:2 µm) 图 2 为原位加热实时观察到的Cu/Al IMC的动态生长过程图, 图 2 (a)—(i)中白色虚线椭圆中的部分即是Cu/Al IMC。状Cu/Al IMC从初始20—40 nm逐步生长至340 nm, 直至Al几乎全部消耗掉。当退火温度稳定后, 没有观测到Cu/AlIMC的生长速度激增的现象, 所以退火温度稳定后大于一个小时的观测数据足够反映Cu/Al IMC在该温度下的生长情况。 原位观察实验表明, 当温度低于175 ◦C时, IMC生长速度相对缓慢; 当温度高于175 ◦C时, IMC生长速度较快。 图 3 (a) Cu/Al 引线键合界面退火前颗粒状 IMC 形貌的 TEM 图 (标尺 = 20 nm); (b) 为 (a) 所示区域 A 中IMC 的 HRTEM 像 (标尺 = 10 nm); (c) 为 (b) 所示 IMC 的 FFT 图, 经标定得出为 Cu9Al4 图 3 所示的是退火前Cu/Al引线键合界面的IMC相分析。 退火前IMC呈孤岛颗粒状分布在Cu/Al键合界面, 如图 3 (a)所示。 图 3 (b), (c)分别是(a)所示IMC的高分辨二维晶格像和快速傅里叶转换图(FFT), 此处IMC经过分析确认为Cu9Al4。 分析得到, IMC退火前的主要成分是Cu9Al4, 少量成分是CuAl2。而在其他文献研究中, 退火前IMC的主要成分是CuAl2, 这可能是因为本样品键合之后经过了塑封处理, 塑封过程需要经历一百多摄氏度下数小时热处理。 图 4 (a)为 Cu/Al 引 线 键 合 界 面 经 过 24 h 退 火 处 理 后STEM 形 貌 图, 经 过 分 析 得 到 IMC 主 要 有 两层, 与Cu相近一端为Cu9Al4(图 4 (c)), 另一层为CuAl2(图 4 (b))。然而, 365 ◦C 下Cu/Al IMC的其他稳定相如CuAl, Cu4Al3, Cu3Al2, 在原位加热没有观测到。 其原因可能是这些成分的热稳定性没有CuAl2 和Cu9Al4 高, 也有可能这些结构分布散乱零碎, 不足以进行高分辨表征。 图 4 (a) Cu/Al 引线键合界面根据表 1 退火 24 h 后 STEM 图 (标尺 = 0:2 µm); (b) 为 (a) 所示区域 B-1 中 IMC的 HRTEM 像 (标尺 = 5 nm), 插图为 B-1 的 FFT 图, 经标定得出为 CuAl2; (c) 为 (a) 所示区域 B-2 中 IMC 的HRTEM 像 (标尺 = 5 nm), 插图为 B-2 的 FFT 图, 经标定得出为 Cu9Al4 2 Cu/Al IMC原位生长速率计算 基于非原位加热、SEM表征Cu/Al IMC厚度随温度和时间变化的数据, 给出了Cu/Al IMC生长公式: 其中X 为IMC厚度(cm), t为退火时间(s), K 为IMC反应速率(cm2/s), K0 为指前因子(cm2/s), Q是激活能(kcal/mol) (1 cal = 4:184 J), R是气体常数(kcal mol−1K−1), T 是退火温度(K), (2)式为阿伦尼乌斯公式,通过计算得到Cu/Al IMC生长公式为 根据(1)式, 本文使用Mathematic软件对原位观测得到的Cu/Al IMC厚度随时间的变化关系数据进行拟合处理, 得到如图5 (a)所示的曲线, 在150 ◦C,175 ◦C, 220 ◦C下Cu/Al IMC厚度随时间近似呈抛物线关系。 利用(1)式进一步对IMC厚度与退火时间的平方根的变化关系数据进行拟合, 可以得到如图 5 (b)所示的拟合直线。 由此, 可以认为原位退火条件下Cu/Al IMC厚度的平方近似正比于退火时间。 图 5 (a) Cu/Al IMC 厚度与退火时间的关系; (b) Cu/AlIMC 厚度对退火时间的平方根的关系 对于图 5 (b)中的拟合直线, 其斜率即是K1/2的值, 可以得到三种不同温度下K1/2 的值, 从而可以得到不同退火温度下IMC的反应速率如表 2 所示。 同时, 表 2 中也给出了非原位实验研究所得Cu/Al IMC反应速率数据与原位实验研究所得Cu/Al IMC反应速率数据的比较。 从表 2 中可以看到, 本文原位研究所得的反应速率略高于非原位研究得到的反应速率, 且随加热温度升高, 两者的相对相差(绝对相差/平均值)逐渐减小。 由表 2 中的数据, 根据(2)式对Cu/Al IMC反应速率的自然对数随退火温度的倒数的变化关系数据进行拟合, 得到如图 6 所示的拟合直线。 根据图 6 中拟合直线的斜率和截距可以得到了原位实验研究Cu/Al IMC生长公式为 表 2 原位和非原位研究方法得到的 Cu/Al IMC 反应速率的比较 比较可知, (3)式和(4)式形式一致, 但是系数不同。为了进一步比较两种方法所得公式的差异, 根据(2)式计算了Cu/Al IMC的激活能Q。如表 3 所示, 原位实验研究所得Cu/Al IMC激活能为23.8 kcal/mol, 而基于SEM非原位实验研究计算得到的Cu/Al IMC 激活能为26 kcal/mol。 表 3 不同研究方法得到的 Cu/Al IMC 激活能比较 基于TEM非原位实验研究分别计算得到CuAl2 和Cu9Al4 的激活能为14.49kcal/mol, 18.06 kcal/mol。从表 3 中比较可知, 原位透射电子显微镜研究所得Cu/Al IMC 的激活能介于SEM和TEM非原位实验研究中间。 如上所述, 由于键合工艺的偏差和Cu/Al IMC不同部位生长的非均匀性, 采用非原位研究方法, 需要在一批样品热处理后再分别进行制样观测。 由于样品本身的差异, 这种非原位的方法相比于原位实验研究将产生较大的误差。 同时, 非原位实验研究中, 一组样品之间退火时长的间隔从几小时到几十小时不等, 长时间的缺乏监控, 将大大增加生长过程中的不确定性。 而原位透射电子显微镜研究, 不但提供了实时观测Cu/Al IMC热生长的可能, 还可以更加精确地测量Cu/Al IMC生长。 精确的Cu/Al IMC生长公式, 对准确地预测Cu/Al引线键合的可靠性具有重大意义, 对Cu/Al引线键合产品的正确使用环境提供了指导, 甚至对芯片设计中散热标准提出了指导。 图 6 Cu/Al IMC 反应速率的自然对数 lnK 与退火温度T 的倒数关系 四、结论 本文基于原位高分辨透射电子显微镜实时观测了Cu/Al引线键合界面金属间化合物退火条件下的结构演变过程。 实验表明, 退火后CuAl IMC的主要产物为CuAl2 和Cu9Al4。 同时, 拟合计算得到了不同退火温度下Cu/Al金属间化合物的反应速率和激活能(23.8 kcal/mol), 给出了基于原位实验结果的更加精确的Cu/Al IMC生长公式, 为Cu/Al引线键合的应用、芯片散热设计和可靠性预测提供了指导。
随着全球制造业步入工业4.0的新纪元,技术的飞速发展正引领着自动化领域的深刻变革。在这场变革中,数据成为了驱动工业自动化转型的核心引擎,而DeepMind Industrial(简称DMI),作为新一代工业智能技术的领航者,正为自动化进程注入前所未有的活力与动能。对于身处工控领域的专业人士而言,紧跟这一技术潮流,不仅是提升当前竞争力的关键,更是为未来职业发展铺就坚实基石的必由之路。 一、自动化技术的迭代演进 从早期的继电器控制,到PLC引领的电气化时代,再到如今工业互联网驱动的数字化浪潮,工业自动化技术经历了数次质的飞跃。而DMI的出现,正推动着自动化系统向“智能感知-精准分析-自主决策”的高级阶段迈进。这一转变的核心,在于数据的深度挖掘与高效利用。 传统自动化系统虽然实现了基本的设备控制,但数据价值挖掘不足,大量设备状态、工艺参数等宝贵信息被束缚于本地系统之中,难以转化为生产力。DMI通过构建开放的数据云平台,打通了从生产现场至云端的数据链路,使工业数据得以自由流动、深度分析,并转化为可量化的生产效益。在控制层面,DMI的实时数据处理引擎能够毫秒级响应,轻松应对数千个IO点的动态数据;在系统协同上,其强大的异构集成能力,让不同品牌、不同协议的设备无缝对接,实现了从“单机智能”到“系统智能”的跨越。 二、DMI技术体系的革新力量 1.设备互联的桥梁 面对工业现场设备协议林立、互操作性差的挑战,DMI凭借其强大的协议解析与自适应转换技术,能够原生支持多达数十种工业通信协议,显著缩短了老旧设备的智能化改造周期,为制造企业节省了大量成本。 2.控制逻辑的智能化升级 不同于传统PLC依赖于人工预设的控制逻辑,DMI引入了基于数据驱动的动态优化机制,能够根据实时工况自动调整控制参数。在精密制造领域,这一技术将数控机床的定位精度提升至亚微米级;在流程工业中,通过多变量优化控制,显著降低了反应釜的温度波动,提升了生产效率与产品质量。 3.能效管理的智慧化转型 面对“双碳”目标的迫切需求,DMI提供的能效管理解决方案,通过实时监测与分析电能质量,结合先进的预测算法,帮助企业实现能效最大化,同时减少碳排放。某能源企业采用DMI方案后,其空压机系统的综合能效提升显著,年碳排放量大幅降低。 三、工业自动化的未来展望 1.去中心化的控制架构 随着边缘计算的兴起,DMI正引领控制架构向“边缘智能+云端优化”的混合模式转变。这一架构既保证了控制的实时性,又充分利用了云端的计算资源,推动了智能制造的深入发展。 2.工艺知识的数字化传承 DMI利用知识图谱技术,将工程师的经验智慧转化为结构化的数字资产,加速了新员工培训,提升了工艺参数设置的准确性,为制造业的人才培养注入了新的活力。 3.人机协作的深度融合 在DMI的赋能下,工业机器人不再仅仅是执行预设程序的工具,而是具备了自主学习与决策能力的智能伙伴。通过深度融合的视觉识别与运动控制,机器人能够灵活应对复杂工况,开创了人机共融的新篇章。 四、工控从业者的能力转型 1.从编程者到架构师 掌握DMI技术,工控人员需从单一的PLC编程或hmi设计,向系统架构设计转型。利用DMI的可视化建模工具,快速构建数字孪生模型,优化生产流程,提升整体效能。 2.从维修工到分析师 DMI的设备健康管理模块,让工程师从故障排除转向预测性维护,通过多维度数据分析,提前预判设备故障,降低维护成本,减少非计划停机时间。 3.从单机调试到生态协同 在DMI构建的工业互联网生态中,工程师需具备跨系统、跨领域的协同能力,通过集成不同工序、不同系统的数据,实现全局优化,提升整体运营效率。 五、行动指南:拥抱变革,共创未来 技术深造:系统学习DMI技术体系,掌握其设备接入、数据接口及开发工具,为技术转型打下坚实基础。 实践积累:积极参与实际项目,运用DMI的预测性维护、能效优化等功能,积累从数据采集到价值创造的实战经验。 思维转变:树立“数据驱动”的理念,将工艺经验转化为可量化的优化模型,推动从经验决策向智能决策的转型。 结语 工业4.0的浪潮下,DMI以其卓越的技术实力和广泛的应用前景,正引领着工业自动化领域的新一轮变革。通过深度挖掘数据价值,打破传统壁垒,DMI不仅助力企业在生产效率与产品质量上实现质的飞跃,更为工控从业者开辟了更加宽广的职业道路与发展空间。在这场技术变革的洪流中,唯有积极拥抱DMI,方能把握未来,共创工业自动化的辉煌篇章。
在建筑物和工业设施中,电缆的敷设非常重要,但是并不是所有的场所都适合敷设电缆。在敷设电缆时,需要注意电缆质量、方向、保护措施、防盗措施等方面的问题,以确保电缆的安全性和正常使用。 ▷ 电缆在桥架内敷设常被忽略的几个要点: 1、当电缆根数超过12根以上时 有可能会同时过载的多回路或多根多芯电缆无间距成束敷设在同一托盘或梯架内敷设,当电缆根数超过12根以上时,电缆载流量未考虑校正系数,这会导致选择的电缆截面偏小,保护器有可能无法保护电缆,电缆过负荷引发火灾等事故。 【解析】 电缆多层排列,底层电缆会因散热不良导致降低系数更小,此时若按单层排列的降低系数,会导致选择的电缆截面偏小。 1)根据托盘或梯架的尺寸大小,确定电缆排列层数,依据《电力工程电缆设计标准》GB50217-2018附录D.0.6电缆桥架上无间距配置多层并列电缆载流量的校正系数进行选择(下表)。 (2)当电缆采用单层排列方式敷设时,可采用《建筑电气常用数据》19DX101-1中电线电缆载流量降低系数,此时需校验电缆托盘或梯架的截面面积是否满足《低压配电设计规范》GB50054-2011第7.6.14条“电缆在托盘和梯架内敷设时,电缆总截面面积与托盘和梯架横截面面积之比,电力电缆不应大于40%,控制电缆不应大于50%”之规定。 2、中间加隔板的桥架不能保证消防线缆的安全 普通负荷与消防负荷的电缆不能采用中间加隔板隔开的桥架敷设,否则火灾时不能保证消防电缆的安全。 【解析】 虽然,依据《民用建筑电气设计标准》GB51348-2019第8.5.13条规定:不同电压、不同用途的电缆不宜敷设在同一桥架内,当受条件限制需安装在同一层桥架上时,应加隔板隔开。 此规定经时间的检验,在火灾现场发现普通负荷与消防负荷的电缆同桥架敷设,中间加隔板隔开,普通线路发生火灾,消防线缆也同时烧毁。由此看出,中间加隔板不能保证消防线缆的安全。 所以,依据《民用建筑电气设计标准》GB51348-2019第13.8.5.1条规定:建议相同电压等级的消防负荷的电缆采用专用的桥架敷设。 3、电缆在屋面不宜使用金属线槽敷设 空调多联机机组或冷却塔放在建筑物的屋面,其配电线路在屋面无遮阳措施的用金属线槽明敷,在夏季,受太阳直接照射屋面的温度可能超60°C,由于电缆封闭在线槽内,热阻升高,线槽内温度可能同步上升,也有可能上升至60°C甚至更高,而选用的电缆载流量没有按环境温度进行温度校正。造成电缆在实际温度下的载流量偏小,可能导致电缆过载的发生。 【解析】 我们选择电缆线径时,一般会先查找电缆的载流量,多数资料会提供常用电缆的几种常用温度下的载流量数据,在空气中敷设的有25°C、30°C、35°C、40°C等4种,当敷设处的环境温度不同于这4种数据时,载流量应乘以校正系数K,其计算公式为: 式中:θn——电缆现行允许长期工作温度,°C; θa——敷设处的环境温度,℃; θc——已知载流量数据的对应温度,℃。 按电缆实际敷设处的环境温度进行载流量校正计算,再选择电缆。 在户外太阳直接照射的电力电缆,应采取遮阳措施或带防雨措施的可自由敷设而非封闭敷设的有孔托盘、梯架、支架等方式。 ▷ 电缆在电缆沟内敷设常被忽略的要点: 1、电缆支架的间距和垂直净距需符合要求 电缆沟内操作不便,如支架间距过小,会造成日后电缆维护不便。 (1)电缆沟的通道宽度和支架层间垂直的最小净距,依据《低压配电设计规范》 GB50054-2011第7.6.23条,应符合下表的规定。 (2)电缆支架间或固定点间的最大间距,依据《低压配电设计规范》GB50054-2011第7.6.27条,应符合下表的规定。 2、室内电缆沟应有防水措施 变电所设置在地下室最底层时,因建筑防水或结构混凝土密闭性不良时,底板返水情况时有发生,此时电缆沟若不采取防水措施,敷设其内的电缆绝缘性能将会降低,有引发事故的可能。 【解析】 (1)变电所不宜设置在地下室最底层。当中央制冷机房设置在最底层时,其专用变电所可设置在制冷机房的上一层或上部空间,以防止积水侵扰。 (2)当无法避免积水时,依据《低压配电设计规范》GB50054-2011第7.6.24条规定:电缆沟应采取防水措施,其底部排水沟的坡度不应小于0.5%,并应设置水坑,积水可经集水坑用泵排出。 当有条件时,积水可直接排入下水道。并且应满足《民用建筑电气设计标准》GB51348-2019第8.7.3.7条,“电缆沟和电缆隧道应采取防水措施,其底部应做不小于0.5%的坡度坡向集水坑(井);积水可经逆止阀直接接人排水管道或经集水坑(井)用泵排出”的要求。 声明 本号所刊发文章仅为学习交流之用,无商业用途,向原作者致敬。因某些文章转载多次无法找到原作者在此致歉,若有侵权请联系小编,我们将及时删文或者付费转载并注明出处,感谢您的支持!
计数器是重要的电子器件、设备之一,所以我们有必要对计数器有所认识。在这篇文章中,小编将对计数器、计数器的作用、计数器的种类以及计数器的应用予以介绍。如果你对计数器相关内容具有兴趣,不妨继续往下阅读哦...
来源:网络 在工业和商业应用中,大多数泵和风扇由交流感应电动机驱动,“交流感应电机”是一种依靠电流来转动转子的异步电动机,转矩是由转子中的电流产生的,电流是由定子绕组的磁场通过电磁感应产...
在工业和商业应用中,大多数泵和风扇由交流感应电动机驱动,“交流感应电机”是一种依靠电流来转动转子的异步电动机,转矩是由转子中的电流产生的,电流是由定子绕组的磁场通过电磁感应产生的,转子总是...
来源:发动机技术 中国车用电机在全球资源条件下具有明显的比较优势,发展潜力较大。从新能源汽车的产业链来看,受益端将主要集中在核心零部件领域。国内车用驱动电机行业现状:电机业中的小行业、但制造...
文章中讨论的其他器件:AM2634-Q1电动汽车 (EV) 牵引逆变器是电动汽车的核心。它将高压电池的直流电转换为多相(通常为三相)交流电以驱动牵引电机,并控制制动产生的能量再生。电动汽车电子产品正在从 40...
什么是永磁电机? 永磁电机采用永磁体生成电机的磁场,无需励磁线圈也无需励磁电流,效率高结构简单,是很好的节能电机,随着高性能永磁材料的问世和控制技术的迅速发展.永磁电机的应用将会变得更为广...
电动汽车最重要的应该就是电机了,那么电动汽车电动机哪种好?新能源汽车具有环保、节约、简单三大优势。在纯电动汽车上体现尤为明显:以电动机代替燃油机,由电机驱动而无需自动变速箱。相对于自动变速箱...