声明本号所刊发文章仅为学习交流之用,无商业用途,向原作者致敬。因某些文章转载多次无法找到原作者在此致歉,若有侵权请联系小编,我们将及时删文或者付费转载并注明出处,感谢您的支持!(来源:网络,版权归原作者)分享 · 共赢电气圈,一个有态度的圈子
随着新能源车的不断普及,普通大众对新能源汽车接受度的提高,更低成本,更清洁的能源正在改变我们的生活。而电动车的电池安全性和续航里程成为不少消费者和厂家关注的问题。如果电池电量监...
制动电阻,其正式名称为刹车电阻,顾名思义,即用于制动过程中的电阻组件。为何需要这一组件呢?原因在于,当电机通过电流产生磁场进而驱动转动时,若需紧急或迅速停止电机运转,驱动器会立即停止输出电力。然而,由于电机的惯性,它无法即刻停止,而是会继续旋转。此时,电机角色逆转,由电动机转变为发电机,产生电能。 在电机频繁启动与停止,或需要快速制动的情况下,这种由电动机到发电机的转变尤为明显。产生的电能若无法有效处理,将回流至变频器,可能导致过流故障,甚至直接损坏变频器。制动电阻的作用,正是将这部分多余的电能转化为热能,从而安全地消耗掉。 关于制动电阻的选用,其阻值大小需依据具体设备的说明书来确定,以确保既能有效制动,又不会造成过度发热或其他问题。 那么,何时必须使用制动电阻呢?答案是在电机需要频繁启停,或需承载较大负载时。在这些情况下,制动电阻的存在至关重要,它不仅能保护变频器免受损害,还能确保电机在需要时能够迅速、平稳地停止运转。 在选择制动电阻时,我们需要考虑以下因素: 1.电阻功率:选择的制动电阻的功率应该大于变频器在最大制动状态下产生的再生电能的功率。具体来说,可以根据变频器的技术手册中给出的再生电能的数值来选择电阻功率。 2.电阻阻值:选择的电阻阻值会影响到制动电阻的电流和电压,从而影响到制动的效果。一般而言,可以根据变频器的技术手册中给出的制动电阻的阻值推荐范围来选择电阻阻值。 3.散热性能:制动电阻在工作中会产生热量,因此需要考虑制动电阻的散热性能。一般来说,可以选择表面贴装或内置风冷的制动电阻,以确保其散热性能。 4.可靠性:制动电阻是变频器的重要部件之一,因此需要选择可靠性高的产品。一般来说,可以选择知名品牌、质量有保障的制动电阻。 5.环境适应性:制动电阻需要在恶劣的环境下工作,因此需要考虑其环境适应性。一般来说,可以选择密封性好、防尘、防潮、耐高温、耐低温的制动电阻。 通用变频器制动电阻选型表 在安装制动电阻时,需要注意以下几点: 1.确保制动电阻的安装位置通风良好,有利于散热。 2.确保制动电阻的连接线牢固可靠,避免出现接触不良或松动的情况。 3.在安装过程中,不要用力拉扯制动电阻的连接线,以免造成连接线断裂或松动。 4.在安装完成后,需要对制动电阻进行检查,确保其正常工作。
在Linux中经常发现空闲内存很少,似乎所有的内存都被系统占用了,感觉是内存不够用了。其实不然,这是Linux内存管理的一个优秀的特征,主要特点是,物理物理内存有多大,Linux都将其充分利用,将一些程序调用过的硬盘数据读入内存(buffer/Cache),利用内存读写的高速特性来提供Linux系统的数据访问性能高。 1. 什么是Page Cache 当程序去读文件,可以通过read也可以通过mmap去读,当你通过任何一种方式从磁盘读取文件时,内核都会给你申请一个Page cache,用来缓存磁盘上的内容。这样读过一次的数据,下次读取的时候就直接从Page cache里去读,提升了系统的整体性能。 对于Linux可以怎么来观察Page Cache呢?其实,在Linux上直接可以通过命令来看,他们的内容是一致的。 首先最简单的是free命令来看一下 首先我们来看看buffers和cached的定义 Buffers 是对原始磁盘块的临时存储,也就是用来缓存磁盘的数据,通常不会特别大(20MB 左右)。这样,内核就可以把分散的写集中起来,统一优化磁盘的写入,比如可以把多次小的写合并成单次大的写等等。 Cached 是从磁盘读取文件的页缓存,也就是用来缓存从文件读取的数据。这样,下次访问这些文件数据时,就可以直接从内存中快速获取,而不需要再次访问缓慢的磁盘 buffer cache和page cache在处理上是保持一致的,但是存在概念上的差别,page cache是针对文件的cache,buffer是针对磁盘块数据的cache,仅此而已。 2. 为什么需要page cache 通过上图,我们可以直观的看到,标准的I/O和内存映射会先将数据写到Page Cache,这样做是通过减小I/O次数来提升读写效率。我们来实际的例子,我们先来生成一个1G的文件,然后通过把Page cache清空,确保文件内容不在内存中,一次来比较第一次和第二次读文件的差异。 # 1. 生成一个1G的文件dd if=/dev/zero of=/home/dd.out bs=4096 count=1048576# 2.第一次读取文件的耗时如下:root@root-PC:~# time cat /home/dd.out &> /dev/nullreal 0m1.109suser 0m0.016ssys 0m1.093s# 23.清空Page Cache,先执行一下sync来将脏页同步到磁盘,在执行drop cachesync && echo 3 > /proc/sys/vm/drop_caches# 4. 第二次读取文件的耗时如下: root@root-PC:~# time cat /home/dd.out &> /dev/nullreal 0m36.018suser 0m0.069ssys 0m4.839s 通过这两次详细的过程,可以看出第一次读取文件的耗时远小于第二次耗时 因为第一次读取的时候,由于文件内容已经在生成文件的时候已经存在,所以直接从内存读取的数据 第二次会将缓存数据清掉,会从磁盘上读取内容,磁盘I/O比较耗时,内存相比磁盘会快很多 所以Page Cache存在的意义,减小I/O,提升应用的I/O速度。对于Page Cache方案,我们采用原则如下 如果不想增加应用的复杂度,我们优先使用内核管理的Page Cache 如果应用程序需要做精确控制,就需要不走Cache,因为Page Cache有它自身的局限性,就是对于应用程序太过于透明了,以至于很难有好的控制方法。 3. Page Cache是如何“诞生的” Page Cache的产生有两种不同的方式 Buffered I/O(标准I/O) Memory-Mapped I/O(储存映射IO) 这两种方式分别都是如何产生Page Cache的呢? 从图中可以看到,二者是都能产生Page Cache,但是二者还是有差异的 标准I/O是写的话用户缓存区(User page对应的内存),然后再将用户缓存区里的数据拷贝到内核缓存区(Pagecahe Page对应的内存);如果是读的话则是内核缓存区拷贝到用户缓存区,再从用户缓存区去读数据,也就是Buffer和文件内容不存在映射关系 储存映射IO,则是直接将Page Cache的Page给映射到用户空间,用户直接读写PageCache Page里的数据 从原理来说储存映射I/O要比标准的I/O效率高一些,少了“用户空间到内核空间互相拷贝”的过程。下图是一张简图描述这个过程: 首先,往用户缓冲区Buffer(用户空间)写入数据,然后,Buffer中的数据拷贝到内核的缓冲区(这个是PageCache Page) 如果内核缓冲区还没有这个page,就会发生Page Fault会去分配一个Page;如果有,就直接用这个PageCache的Page 拷贝结束后,该PageCache的Page是一个Dirty Page脏页,然后该Dirty Page中的内容会同步到磁盘,同步到磁盘后,该PageCache Page变味Clean Page并且继续存在系统中 我们可以通过手段来测试脏页,如下图所示 $ cat /proc/vmstat | egrep "dirty|writeback"nr_dirty 44nr_writeback 0nr_writeback_temp 0nr_dirty_threshold 1538253nr_dirty_background_threshold 768187 nr_dirty:表示系统中积压了多少脏页(单位为Page 4KB) nr_writeback则表示有多少脏页正在回写到磁盘中(单位为Page 4KB) 总结 读过程,当内核发起一个读请求时候 先检查请求的数据是否缓存到page Cache中,如果有则直接从内存中读取,不访问磁盘 如果Cache中没有请求数据,就必须从磁盘中读取数据,然后内核将数据缓存到Cache中 这样后续请求就可以命中cache,page可以只缓存一个文件的部分内容,不需要把整个文件都缓存 写过程,当内核发起一个写请求时候 直接写到Cache中,内核会将被写入的Page标记为dirty,并将其加入到dirty list中 内核会周期性的将dirty list中的page回写到磁盘上,从而使磁盘上的数据和内存中缓存的数据一致 4. page cache是如何“死亡” free命令中的buffer/cache中的是“活着”的Page Cache,那他们是什么时候被回收的呢? 回收的主要方式有两种 直接回收: 后台回收: 观察Page cache直接回收和后台回收最简单方便的方式,借助这个工具,可以明确观察内存回收行为 pgscank/s: kswapd(后台回收线程)每秒扫面的Page个数 pgscand/s: Application在内存申请过程中每秒直接扫描的Page个数 pgsteal/s: 扫面的page中每秒被回收的个数 %vmeff: pgsteal/(pgscank+pgscand),回收效率,越接近100说明系统越安全,越接近0,说明系统内存压力越大 pgpgin/s 表示每秒从磁盘或SWAP置换到内存的字节数(KB) pgpgout/s: 表示每秒从内存置换到磁盘或SWAP的字节数(KB) fault/s: 每秒钟系统产生的缺页数,即主缺页与次缺页之和(major + minor) majflt/s: 每秒钟产生的主缺页数. pgfree/s: 每秒被放入空闲队列中的页个数 需要C/C++ Linux服务器架构师学习资料加qun579733396获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享 5.Page Cache性能优化 通过前文我们知道了Linux是用Cache/Buffer缓存数据,提高系统的I/O性能,且有一个回刷任务在适当时候把脏数据回刷到储存介质中。那么接下来我们重点学习优化机制。 包括以下内容 什么时候触发回刷? 脏数据达到多少阈值还是定时触发呢? 内核是如何做到回写机制的 (1) 配置概述 Linux内核在/proc/sys/vm中有透出数个配置文件,可以对触发回刷的时机进行调整。内核的回刷进程是怎么运作的呢?这数个配置文件有什么作用呢? root@public-VirtualBox:~# sysctl -a | grep dirtyvm.dirty_background_bytes = 0vm.dirty_background_ratio = 10vm.dirty_bytes = 0vm.dirty_expire_centisecs = 3000vm.dirty_ratio = 20vm.dirty_writeback_centisecs = 500vm.dirtytime_expire_seconds = 43200 在/proc/sys/vm中有以下文件与回刷脏数据密切相关: vm.dirty_background_ratio: 内存可以填充脏数据的百分比,这些脏数据稍后会写入磁盘。pdflush/flush/kdmflush这些后台进程会稍后清理脏数据。比如,我有32G内存,那么有3.2G(10%的比例)的脏数据可以待着内存里,超过3.2G的话就会有后台进程来清理。 vm.dirty_ratio 可以用脏数据填充的绝对最大系统内存量,当系统到达此点时,必须将所有脏数据提交到磁盘,同时所有新的I/O块都会被阻塞,直到脏数据被写入磁盘。这通常是长I/O卡顿的原因,但这也是保证内存中不会存在过量脏数据的保护机制。 vm.dirty_background_bytes 和 vm.dirty_bytes 另一种指定这些参数的方法。如果设置 xxx_bytes版本,则 xxx_ratio版本将变为0,反之亦然。 vm.dirty_expire_centisecs 指定脏数据能存活的时间。在这里它的值是30秒。当 pdflush/flush/kdmflush 在运行的时候,他们会检查是否有数据超过这个时限,如果有则会把它异步地写到磁盘中。毕竟数据在内存里待太久也会有丢失风险。 vm.dirty_writeback_centisecs 指定多长时间 pdflush/flush/kdmflush 这些进程会唤醒一次,然后检查是否有缓存需要清理。 实际上dirty_ratio的数字大于dirty_background_ratio,是不是就不会达到dirty_ratio呢? 首先达到dirty_background_ratio的条件后触发flush进程进行异步的回写操作,但是这一过程中应用进程仍然可以进行写操作,如果多个应用写入的量大于flush进程刷出的量,那自然就会达到vm.dirty_ratio这个参数所设定的阙值,此时操作系统会转入同步地进行脏页的过程,阻塞应用进程。 (2)配置实例 单纯的配置说明毕竟太抽象。结合网上的分享,我们看看在不同场景下,该如何配置? 场景1:尽可能不丢数据 有些产品形态的数据非常重要,例如行车记录仪。在满足性能要求的情况下,要做到尽可能不丢失数据。 /* 此配置不一定适合您的产品,请根据您的实际情况配置 */dirty_background_ratio = 5dirty_ratio = 10dirty_writeback_centisecs = 50dirty_expire_centisecs = 100 这样的配置有以下特点: 当脏数据达到可用内存的5%时唤醒回刷进程 脏数据达到可用内存的10%时,应用每一笔数据都必须同步等待 每隔500ms唤醒一次回刷进程 当脏数据达到可用内存的5%时唤醒回刷进程 由于发生交通事故时,行车记录仪随时可能断电,事故前1~2s的数据尤为关键。因此在保证性能满足不丢帧的情况下,尽可能回刷数据。 此配置通过减少Cache,更加频繁唤醒回刷进程的方式,尽可能让数据回刷。 此时的性能理论上会比每笔数据都O_SYNC略高,比默认配置性能低,相当于用性能换数据安全。 场景2:追求更高性能 有些产品形态不太可能会掉电,例如服务器。此时不需要考虑数据安全问题,要做到尽可能高的IO性能。 /* 此配置不一定适合您的产品,请根据您的实际情况配置 */dirty_background_ratio = 50dirty_ratio = 80dirty_writeback_centisecs = 2000dirty_expire_centisecs = 12000 这样的配置有以下特点: 当脏数据达到可用内存的50%时唤醒回刷进程 当脏数据达到可用内存的80%时,应用每一笔数据都必须同步等待 每隔20s唤醒一次回刷进程 内存中脏数据存在时间超过120s则在下一次唤醒时回刷 与场景1相比,场景2的配置通过 增大Cache,延迟回刷唤醒时间来尽可能缓存更多数据,进而实现提高性能 场景3:突然的IO峰值拖慢整体性能 什么是IO峰值?突然间大量的数据写入,导致瞬间IO压力飙升,导致瞬间IO性能狂跌,对行车记录仪而言,有可能触发视频丢帧。 /* 此配置不一定适合您的产品,请根据您的实际情况配置 */dirty_background_ratio = 5dirty_ratio = 80dirty_writeback_centisecs = 500dirty_expire_centisecs = 3000 这样的配置有以下特点: 当脏数据达到可用内存的5%时唤醒回刷进程 当脏数据达到可用内存的80%时,应用每一笔数据都必须同步等待 每隔5s唤醒一次回刷进程 内存中脏数据存在时间超过30s则在下一次唤醒时回刷 这样的配置,通过增大Cache总容量,更加频繁唤醒回刷的方式,解决IO峰值的问题,此时能保证脏数据比例保持在一个比较低的水平,当突然出现峰值,也有足够的Cache来缓存数据。 (3)内核演变 对于回写方式在之前的2.4内核中,使用 bdflush的线程专门负责writeback的操作,因为磁盘I/O操作很慢,而现代操作系统通常具有多个块设备,如果bdflush在其中一个块设备上等待I/O操作的完成,可能需要很长的时间,此时其他块设备还处于空闲状态,这时候,单线程模式的bdflush就称为了影响性能的瓶颈。而此时bdflush是没有周期扫描功能,因此需要配合kupdate线程一起使用。 bdflush 存在的问题: 整个系统仅仅只有一个 bdflush 线程,当系统回写任务较重时,bdflush 线程可能会阻塞在某个磁盘的I/O上, 导致其他磁盘的I/O回写操作不能及时执行 于是在2.6内核中,bdflush机制就被pdflush取代,pdflush是一组线程,根据块设备I/O负载情况,数量从最少的2个到最多的8个不等,如果1S内都没有空闲的pdflush线程可用,内核将创建一个新的pdflush线程,反之某个pdflush线程空闲超过1S,则该线程将会被销毁。pdflush 线程数目是动态的,取决于系统的I/O负载。它是面向系统中所有磁盘的全局任务的。 pdflush 存在的问题: pdflush的数目是动态的,一定程度上缓解了 bdflush 的问题。但是由于 pdflush 是面向所有磁盘的,所以有可能出现多个 pdflush 线程全部阻塞在某个拥塞的磁盘上,同样导致其他磁盘的I/O回写不能及时执行。 于是在内最新的内核中,直接将一个块设备对应一个thread,这种内核线程被称为flusher threads,线程名为“Writeback",执行体为"wb_workfn",通过workqueue机制实现调度。 (4)内核实现 由于内核page cache的作用,写操作实际被延迟写入。当page cache里的数据被用户写入但是没有刷新到磁盘时,则该page为脏页(块设备page cache机制因为以前机械磁盘以扇区为单位读写,引入了buffer_head,每个4K的page进一步划分成8个buffer,通过buffer_head管理,因此可能只设置了部分buffer head为脏)。 脏页在以下情况下将被回写(write back)到磁盘上: 脏页在内存里的时间超过了阈值。 系统的内存紧张,低于某个阈值时,必须将所有脏页回写。 用户强制要求刷盘,如调用sync()、fsync()、close()等系统调用。 以前的Linux通过pbflush机制管理脏页的回写,但因为其管理了所有的磁盘的page/buffer_head,存在严重的性能瓶颈,因此从Linux 2.6.32开始,脏页回写的工作由bdi_writeback机制负责。bdi_writeback机制为每个磁盘都创建一个线程,专门负责这个磁盘的page cache或者buffer cache的数据刷新工作,以提高I/O性能。 在 kernel/sysctl.c中列出了所有的配置文件的信息 static struct ctl_table vm_table[] = { ... { .procname = "dirty_background_ratio", .data = &dirty_background_ratio, .maxlen = sizeof(dirty_background_ratio), .mode = 0644, .proc_handler = dirty_background_ratio_handler, .extra1 = &zero, .extra2 = &one_hundred, }, { .procname = "dirty_ratio", .data = &vm_dirty_ratio, .maxlen = sizeof(vm_dirty_ratio), .mode = 0644, .proc_handler = dirty_ratio_handler, .extra1 = &zero, .extra2 = &one_hundred, }, { .procname = "dirty_writeback_centisecs", .data = &dirty_writeback_interval, .maxlen = sizeof(dirty_writeback_interval), .mode = 0644, .proc_handler = dirty_writeback_centisecs_handler, }, ...} 这些值在mm/page-writeback.c中有全局变量定义 int dirty_background_ratio = 10;int vm_dirty_ratio = 20;unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 通过ps -aux,我们可以看到writeback的内核进程 这实际上是一个工作队列对应的进程,在default_bdi_init()中创建(mm/backing-dev.c) static int __init default_bdi_init(void){ int err; bdi_wq = alloc_workqueue("writeback", WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND | WQ_SYSFS, 0); if (!bdi_wq) return -ENOMEM; err = bdi_init(&noop_backing_dev_info); return err;} 回刷进程的核心是函数wb_workfn(),通过函数wb_init()绑定。 static int wb_init(struct bdi_writeback *wb, struct backing_dev_info *bdi int blkcg_id, gfp_t gfp){ ... INIT_DELAYED_WORK(&wb->dwork, wb_workfn); ...} 唤醒回刷进程的操作是这样的 static void wb_wakeup(struct bdi_writeback *wb){ spin_lock_bh(&wb->work_lock); if (test_bit(WB_registered, &wb->state)) mod_delayed_work(bdi_wq, &wb->dwork, 0); spin_unlock_bh(&wb->work_lock);} 表示唤醒的回刷任务在工作队列writeback中执行,这样,就把工作队列和回刷工作绑定了,重点看看这个接口做了些什么工作 void wb_workfn(struct work_struct *work){ struct bdi_writeback *wb = container_of(to_delayed_work(work), struct bdi_writeback, dwork); long pages_written; set_worker_desc("flush-%s", dev_name(wb->bdi->dev)); current->flags |= PF_SWAPWRITE; //如果当前不是一个救援工作队列,或者当前bdi设备已注册,这是一般路径 if (likely(!current_is_workqueue_rescuer() || !test_bit(WB_registered, &wb->state))) { ------------------------(1) /* * The normal path. Keep writing back @wb until its * work_list is empty. Note that this path is also taken * if @wb is shutting down even when we're running off the * rescuer as work_list needs to be drained. */ do {从bdi的work_list取出队列里的任务,执行脏页回写 pages_written = wb_do_writeback(wb); trace_writeback_pages_written(pages_written); } while (!list_empty(&wb->work_list)); } else { -----------------------(2) /* * bdi_wq can't get enough workers and we're running off * the emergency worker. Don't hog it. Hopefully, 1024 is * enough for efficient IO. */ pages_written = writeback_inodes_wb(wb, 1024,//只提交一个work并限制写入1024个pages WB_REASON_FORKER_THREAD); trace_writeback_pages_written(pages_written); } //如果上面处理完到现在这段间隔又有了work,再次立马启动回写进程 if (!list_empty(&wb->work_list)) -----------------------(3) mod_delayed_work(bdi_wq, &wb->dwork, 0); else if (wb_has_dirty_io(wb) && dirty_writeback_interval) wb_wakeup_delayed(wb);//如果所有bdi设备上挂的dirty inode回写完,那么就重置定制器, //再过dirty_writeback_interval,即5s后再唤醒回写进程 current->flags &= ~PF_SWAPWRITE;} 正常路径,rescue workerrescue内核线程,内存紧张时创建新的工作线程可能会失败,如果内核中有会需要回收的内存,就调用wb_do_writeback进行回收 如果当前workqueue不能获得足够的worker进行处理,只提交一个work并限制写入1024个pages 这也过程代码较多,暂不去深入分析,重点关注相关的配置是如何起作用的。 (5) 触发回写方式 触发writeback的地方主要有以下几处: 5.1 主动发起 手动执行sysn命令 sync-> SYSCALL_DEFINE0(sync)-> sync_inodes_one_sb-> sync_inodes_sb-> bdi_queue_work syncfs系统调用 SYSCALL_DEFINE1(syncfs, int, fd)-> sync_filesystem-> __sync_filesystem-> sync_inodes_sb-> bdi_queue_work 直接内存回收,内存不足时调用 free_more_memory-> wakeup_flusher_threads-> __bdi_start_writeback-> bdi_queue_work 分配内存空间不足,触发回写脏页腾出内存空间 __alloc_pages_nodemask-> __alloc_pages_slowpath-> __alloc_pages_direct_reclaim-> __perform_reclaim-> try_to_free_pages-> do_try_to_free_pages-> wakeup_flusher_threads-> __bdi_start_writeback-> bdi_queue_work remount/umount操作,需要先将脏页写回 5.2 空间层面 当系统的“dirty”的内存大于某个阈值,该阈值是在总共的“可用内存”(包括free pages 和reclaimable pages)中的占比。 参数“dirty_background_ratio”(默认值10%),或者是绝对字节数“dirty_background_bytes”(默认值为0,表示生效)。两个参数只要谁先达到即可执行,此时就会交给专门负责writeback的background线程去处理。 参数“dirty_ratio”(默认值30%)和“dirty_bates”(默认值为0,表示生效),当“dirty”的内存达到这个比例或数量,进程则会停下write操作(被阻塞),先把“dirty”进行writeback。 5.3 时间层面 周期性的扫描,扫描间隔用参数:dirty_writeback_interval表示,以毫秒为单位。发现存在最近一次更新时间超过某个阈值(参数:dirty_expire_interval,单位毫秒)的pages。如果每个page都维护最近更新时间,开销会很大且扫描会很耗时,因此具体实现不会以page为粒度,而是按inode中记录的dirtying-time来计算。 (6)总结 文件缓存是一项重要的性能改进,在大多数情况下,读缓存在绝大多数情况下是有益无害的(程序可以直接从RAM中读取数据)。写缓存比较复杂,Linux内核将磁盘写入缓存,过段时间再异步将它们刷新到磁盘。这对加速磁盘I/O有很好的效果,但是当数据未写入磁盘时,丢失数据的可能性会增加。
一、认识动力蓄电池管理系统 动力蓄电池的能量储存与输出都需要模块来进行管理,即动力蓄电池能量管理模块,也称为动力蓄电池管理系统,或动力蓄电池能量管理系统,简称BMS。 1.动力蓄电池管理系统的基本构架组成 BMS按性质可分为硬件和软件,按功能可分为数据采集单元和控制单元。BMS的硬件有主控盒、从控盒、高压控制盒、高压绝缘盒,还包括采集电压、电流、温度等数据的电子传感器,软件包括底层软件和应用层软件,用来监测电池的电压、电流、SOC值、绝缘电阻值、温度值,通过与整车控制器、充电机的通信,控制动力蓄电池系统的充放电。 2.动力蓄电池管理系统的基本功能 BMS通过电压、电流及温度检测等实现对动力蓄电池系统的过电压、欠电压、过电流、过高温和过低温保护,继电器控制,SOC估算,充放电管理,加热或保温,均衡控制,故障报警及处理,与其他控制器通信等功能,此外电池管理系统还具有高压回路绝缘检测功能,以及为动力蓄电池系统加热功能。 动力蓄电池组内的BMS实时采集各单体的电压值、各温度传感器的温度值、电池系统的总电压值和总电流值、电池系统的绝缘电阻值等数据,并根据BMS中设定的阈值判定电池系统工作是否正常,并对故障实时监控。动力蓄电池系统通过BMS使用CAN与整车控制器或允电机之间进行通信,对动力蓄电池系统进行充放电等综合管理。 从整车角度,电池管理系统(BMS)作用或任务可以详述为如下几点: (1)保护单体和动力蓄电池组不受到损害。 (2)使电池工作在合适的电压和温度范围内。 (3)在保持电池在合适的条件运行后,满足整车的需求。 (4)电池参数检测:包括总电压、总电流、单体电压检测、温度检测、绝缘检测、碰撞检测、阻抗检测、烟雾检测等。 (5)电池状态建立:包括荷电量(SOC)、电池功率(SOP)、电池健康状态(SOH)。 (6)在线诊断:故障包括传感器故障、网络故障、电池故障、电池过充、过放、过电流、绝缘故障等。 (7)电池安全保护和告警:包括温控系统控制和高压控制,当诊断出故障,BMS上报故障给整车控制器和充电机,同时切断高压以保护电池不受到损害,包括漏电保护等。 (8)充电控制:BMS慢充和快充控制。 (9)电池一致性控制:BMS采集单体电压信息,采用均衡方式使电池达到一致性,电池的均衡性方式有耗散式和非耗散式。 (10)热管理功能:动力蓄电池组各点的温度采集,在充电和放电过程中,BMS决定是否开启加热和冷却。 (11)网络功能:包括在西安标定和健康、在线程序下载。通常采用CAN网络。 (12)信息存储:BMS需要存储关进数据如SOC、SOH、充放电安时数、故障码。 二、动力蓄电池管理系统的工作原理 BMS的工作原理可简单归纳为:数据采集电路采集动力蓄电池状态信息数据后,由电子控制单元进行数据处理和分析,然后根据分析结果对系统内的相关功能模块发出控制指令,向外传递信息。 1.充电原理 (1)预充电 车载充电机接收到充电枪插入信号后唤醒整车控制器及BMS,BMS进行初检和初始化,完成后上报给整车控制器。整车控制器控制主负继电器闭合,BMS控制主负继电器闭合,对各单体蓄电池进行预充电,确定单体蓄电池无短路后,预充电完成。充电初期预充电流程如下图所示。 (2)充电 预充电完成后,BMS闭合主正继电器,随后断开预充继电器,主电路接通,动力蓄电池开始充电,充电流程如下图所示。 2.放电原理 (1)放电初期 打开点火开关至ON挡,整车控制器唤醒BMS,BMS进行自检和初始化,完成后上报给整车控制器。整车控制器发出高压供电指令,BMS开始按顺序控制继电器的闭合和断开。 因电路中电机控制器和空调压缩机控制器等含有电容,在放电初期,BMS控制预充继电器闭合,给各控制器电容采用低压、小电流进行放电,当电容两端电压接近动力蓄电池总电压时,断开预充继电器。放电初期预充流程如下图所示。 (2)放电 BMS闭合主正继电器,断开预充继电器,主电路接通,动力蓄电池开始放电。放电流程如下图所示。 3.充电加热原理 当动力蓄电池在冬季低温环境下工作时,充放电容量会降低。汽车充电容量会随温度的降低而下降,因而设置了动力蓄电池加热系统,当车辆充电时,如果电芯温度低于设定值,BMS会控制加热继电器闭合,利用力电池内部的加热元件给电芯加热。充电加热流程图如下图所示。 三、动力蓄电池及电池管理系统认知 在纯电动汽车中,动力蓄电池作为汽车唯一的动力来源,动力蓄电池电能的高低决定了电动汽车的行驶里程。其组成一般包括动力电池模组、结构系统、电气系统热管理系统、BMS等,如下图所示为吉利EV450动力蓄电池总成结构示意图。 1.电池模组 吉利帝豪EV450动力蓄电池有17个模组,总电压346V,每个模组由6个单体电池串联而成。模组线路板如下图所示。 2.BMS及控制线束 通过检测电池组中各单体蓄电池的状态来确定整个电池系统的状态,并根据单体蓄电池的状态对动力蓄电池系统进行对应的控制调整和策略实施,实现对动力蓄电池系统及各单体的充放电管理以保证动力蓄电池系统安全稳定地运行,进而达到增加行驶里程,延长使用寿命,降低运行成本的目的。帝豪EV450动力蓄电池BMS系统如下图所示。 3.附件 主要包括模组连接线、冷却水管、保险丝等。 4.高压组件系统 主要包括继电器总成、快充插件、高压插件等,如下图所示。