• LTspice模拟电路仿真-常用快捷键/设置-常量/单位符号

    常用快捷键 在下面的表格里,展示了 LTspice 当中使用频率非常高的一些快捷键(这些快捷键也可以通过展开菜单栏上的【Edit】进行查看或者使用): 快捷键设置 鼠标依次点击 LTspice 菜单栏上的【Simulate -> Settings】打开设置对话框,选中该对话框里的【Schematic】选项卡,按下该界面上的【Keyboard Shortcuts[*]】按钮: 这样就可以查看和修改 LTspice 全部的快捷键设置,其最新的 24.0.0 版本与早期其它版本的默认快捷键设置有所不同,具体请参考如下界面当中的默认设置: 常量符号 单位符号 注意:表达 106 数量级要使用 MEG 或者 meg,而不是使用 M 或者 m;电容器的参数设置里输入 1 表示的是 1 法拉第,而不能使用 1F 或者 1f。 注意:在 .asc 源文件当中,点命令以 ! 符号作为开始,而注释则是以 ; 作为开始。

    昨天 52浏览
  • 铜线键合IMC生长分析

    铜引线键合由于在价格、电导率和热导率等方面的优势有望取代传统的金引线键合, 然而 Cu/Al 引线键合界面的金属间化合物 (intermetallic compounds, IMC) 的过量生长将增大接触电阻和降低键合强度, 从而影响器件的性能和可靠性。 针对以上问题, 本文基于原位高分辨透射电子显微镜技术, 研究了在 50—220◦C 退火温度下, Cu/Al 引线键合界面 IMC 的生长问题, 实时观测到了 Cu/Al IMC的动态生长及结构演变过程。 实验结果表明, 退火前颗粒状的 Cu/Al IMC 分布在键合界面, 主要成分为 Cu9Al4, 少量成分为 CuAl2。退火后 Cu/Al IMC 的成分是: 靠近 Cu 一端为 Cu9Al4, 远离 Cu 的一端为 CuAl2。同时基于原位观测 Cu/Al IMC 的动态生长过程, 计算得到了 Cu/Al IMC 不同温度下的反应速率和激活能, 给出了基于原位实验结果的Cu/Al IMC的生长公式, 为优化Cu/Al引线键合工艺和提高Cu/Al引线键合的可靠性提供了指导。 一、介绍 引线键合起源于20世纪60年代初, 被广泛应用于芯片与基板间的电气互连和芯片间的信息交互。 与传统互连材料金(Au)相比, 铜(Cu)丝具有价格便宜、电导率和热导率高、机械性能更优等优势 , 有望取代Au广泛应用于引线键合。 然而,自1992年美国国家半导体公司成功将Cu 引线键合应用于低端电子产品至今, 由于对Cu引线键合机理和可靠性研究的不充分, 工业界仍对大规模应用Cu丝互连采取保留态度 , 因而对Cu引线键合的研究变得迫切。 在芯片封装流程中, 引线键合后需要进行环氧树脂塑封, 这种后成型封装通常需要在175—200◦C温度下退火4—8h。 Cu/Al引线键合界面在键合和退火过程中由于原子扩散会形成金属间化合物。根据Cu/Al二相图在365 ◦C下Cu/Al IMC共有5个稳定相: CuAl2(θ), CuAl(η2),Cu4Al3(ζ2),Cu3Al2(δ),Cu9Al4(γ1)。 近年来, 大量工作集中研究了Cu/Al键合界面IMC和空洞生成,过量的Cu/Al IMC 和空洞不但会增加接触电阻还会降低键合强度。 早期的研究主要基于光学显微镜、 Micro-XRD或者SEM-EDX, 认为键合后(asbonded)键合界面没有Cu/Al IMC生成, 并得到退火后IMC主要有CuAl2, CuAl和Cu9Al4,基于Micro-XRD分析认为150—300 ◦C下Cu/Al IMC的主要成分为Cu9Al4, 并基于SEM研究得到Cu/Al IMC生长速度是Au/Al IMC 生长速度的10%, 给出了IMC生长公式。 随着电子显微镜发展, 一些工作开始利用高分辨扫描电子显微镜(SEM)和聚焦离子束系统(FIB)对Cu/Al IMC在退火处理下从键合后的几纳米生长至几微米的成分演变进行了研究。近年来, 越来越多的研究开始采用高分辨透射电子显微(TEM)技术, 这些工作直观、精确地获得了一些Cu/Al IMC晶格结构的信息,认为175 ◦C, 200 ◦C和250 ◦C退火条件下Cu-Al IMC由CuAl2 转化为Cu9Al4。 然而,目前关于Cu/Al IMC生长的机理依然不够明确,需要进一步深入研究。同时, 综上所述的所有研究方法均采用非原位研究, 即对一批样品进行不同退火温度和退火时间处理, 然后再进行SEM和TEM表征。与非原位实验研究相比, 原位透射电子显微术(In-situ TEM)基于透射电子显微镜, 结合多功能样品杆(对样品进行多外场负载、力电热性能测试等), 可以对材料实现原位处理和同步观测。因而, 原位透射电子显微技术是研究Cu/Al引线键合界面在多种处理环境中结构演化过程和机理的先进方法。 基于In-situ TEM研究了Cu/Al引线键合界面在50—220 ◦C退火下Cu/Al IMC 的结构演变。 通过原位加热观测, 我们分析了Cu/Al IMC的结构演变, 并计算得到了Cu/Al IMC反应速率, 推导得到了原位加热下Cu/Al IMC生长公式。 二、实 验 如图 1 (a)所示, 直径为22 µm的纯Cu线热超声键合到1.5 µm厚的Al 金属盘, 键合压力为25—35 gf, 超声功率为120—150 mW, 键合温度为180 ◦C, 键合后进行塑封。 沿键合球中心使用传统研磨和抛光, 然后采用聚焦离子双束(FIB dualbeam)减薄, 制备厚度小于100 nm的TEM样品。图 1 (b)所示的是FIB制样所得TEM样品的结构图, 而图 1 (c)是在退火前样品的Cu/Al引线键合界面颗粒状IMC的形貌。 图 1 (a) Cu/Al 引线键合结构示意图; (b) FIB 制样所得原位 TEM 样品结构图 (标尺 = 2 µm); (c) Cu/Al 引线键合界面退火前颗粒状 IMC 形貌 TEM 图 (标尺 = 100 nm) 采用加速电压为300 kV带球差校正的透射电子显微镜(FEI Titan 80-300)对FIB样品进行原位表征。 采用Gatan 628单倾热杆进行原位加热, 加热温度从50—220 ◦C逐渐升高, 每个温度下恒温时间超过1 h, 总共持续24 h, 具体加热过程见表 1 。 表 1 Cu-Al 引线键合 TEM 样品的原位退火温度和时间 三、结果与讨论 1 Cu/Al IMC生长原位观测 图 2 原位实时观察 Cu/Al 引线键合界面 Cu/Al IMC 热生长动态过程 (a)—(i) 分别为所标注的退火温度和退火时间下的 TEM 图 ((a)—(f) 中标尺 = 20 nm; (g)—(h) 中标尺 = 50 nm; (i) 中标尺 = 0:2 µm) 图 2 为原位加热实时观察到的Cu/Al IMC的动态生长过程图, 图 2 (a)—(i)中白色虚线椭圆中的部分即是Cu/Al IMC。状Cu/Al IMC从初始20—40 nm逐步生长至340 nm, 直至Al几乎全部消耗掉。当退火温度稳定后, 没有观测到Cu/AlIMC的生长速度激增的现象, 所以退火温度稳定后大于一个小时的观测数据足够反映Cu/Al IMC在该温度下的生长情况。 原位观察实验表明, 当温度低于175 ◦C时, IMC生长速度相对缓慢; 当温度高于175 ◦C时, IMC生长速度较快。 图 3 (a) Cu/Al 引线键合界面退火前颗粒状 IMC 形貌的 TEM 图 (标尺 = 20 nm); (b) 为 (a) 所示区域 A 中IMC 的 HRTEM 像 (标尺 = 10 nm); (c) 为 (b) 所示 IMC 的 FFT 图, 经标定得出为 Cu9Al4 图 3 所示的是退火前Cu/Al引线键合界面的IMC相分析。 退火前IMC呈孤岛颗粒状分布在Cu/Al键合界面, 如图 3 (a)所示。 图 3 (b), (c)分别是(a)所示IMC的高分辨二维晶格像和快速傅里叶转换图(FFT), 此处IMC经过分析确认为Cu9Al4。 分析得到, IMC退火前的主要成分是Cu9Al4, 少量成分是CuAl2。而在其他文献研究中, 退火前IMC的主要成分是CuAl2, 这可能是因为本样品键合之后经过了塑封处理, 塑封过程需要经历一百多摄氏度下数小时热处理。 图 4 (a)为 Cu/Al 引 线 键 合 界 面 经 过 24 h 退 火 处 理 后STEM 形 貌 图, 经 过 分 析 得 到 IMC 主 要 有 两层, 与Cu相近一端为Cu9Al4(图 4 (c)), 另一层为CuAl2(图 4 (b))。然而, 365 ◦C 下Cu/Al IMC的其他稳定相如CuAl, Cu4Al3, Cu3Al2, 在原位加热没有观测到。 其原因可能是这些成分的热稳定性没有CuAl2 和Cu9Al4 高, 也有可能这些结构分布散乱零碎, 不足以进行高分辨表征。 图 4 (a) Cu/Al 引线键合界面根据表 1 退火 24 h 后 STEM 图 (标尺 = 0:2 µm); (b) 为 (a) 所示区域 B-1 中 IMC的 HRTEM 像 (标尺 = 5 nm), 插图为 B-1 的 FFT 图, 经标定得出为 CuAl2; (c) 为 (a) 所示区域 B-2 中 IMC 的HRTEM 像 (标尺 = 5 nm), 插图为 B-2 的 FFT 图, 经标定得出为 Cu9Al4 2 Cu/Al IMC原位生长速率计算 基于非原位加热、SEM表征Cu/Al IMC厚度随温度和时间变化的数据, 给出了Cu/Al IMC生长公式: 其中X 为IMC厚度(cm), t为退火时间(s), K 为IMC反应速率(cm2/s), K0 为指前因子(cm2/s), Q是激活能(kcal/mol) (1 cal = 4:184 J), R是气体常数(kcal mol−1K−1), T 是退火温度(K), (2)式为阿伦尼乌斯公式,通过计算得到Cu/Al IMC生长公式为 根据(1)式, 本文使用Mathematic软件对原位观测得到的Cu/Al IMC厚度随时间的变化关系数据进行拟合处理, 得到如图5 (a)所示的曲线, 在150 ◦C,175 ◦C, 220 ◦C下Cu/Al IMC厚度随时间近似呈抛物线关系。 利用(1)式进一步对IMC厚度与退火时间的平方根的变化关系数据进行拟合, 可以得到如图 5 (b)所示的拟合直线。 由此, 可以认为原位退火条件下Cu/Al IMC厚度的平方近似正比于退火时间。 图 5 (a) Cu/Al IMC 厚度与退火时间的关系; (b) Cu/AlIMC 厚度对退火时间的平方根的关系 对于图 5 (b)中的拟合直线, 其斜率即是K1/2的值, 可以得到三种不同温度下K1/2 的值, 从而可以得到不同退火温度下IMC的反应速率如表 2 所示。 同时, 表 2 中也给出了非原位实验研究所得Cu/Al IMC反应速率数据与原位实验研究所得Cu/Al IMC反应速率数据的比较。 从表 2 中可以看到, 本文原位研究所得的反应速率略高于非原位研究得到的反应速率, 且随加热温度升高, 两者的相对相差(绝对相差/平均值)逐渐减小。 由表 2 中的数据, 根据(2)式对Cu/Al IMC反应速率的自然对数随退火温度的倒数的变化关系数据进行拟合, 得到如图 6 所示的拟合直线。 根据图 6 中拟合直线的斜率和截距可以得到了原位实验研究Cu/Al IMC生长公式为 表 2 原位和非原位研究方法得到的 Cu/Al IMC 反应速率的比较 比较可知, (3)式和(4)式形式一致, 但是系数不同。为了进一步比较两种方法所得公式的差异, 根据(2)式计算了Cu/Al IMC的激活能Q。如表 3 所示, 原位实验研究所得Cu/Al IMC激活能为23.8 kcal/mol, 而基于SEM非原位实验研究计算得到的Cu/Al IMC 激活能为26 kcal/mol。 表 3 不同研究方法得到的 Cu/Al IMC 激活能比较 基于TEM非原位实验研究分别计算得到CuAl2 和Cu9Al4 的激活能为14.49kcal/mol, 18.06 kcal/mol。从表 3 中比较可知, 原位透射电子显微镜研究所得Cu/Al IMC 的激活能介于SEM和TEM非原位实验研究中间。 如上所述, 由于键合工艺的偏差和Cu/Al IMC不同部位生长的非均匀性, 采用非原位研究方法, 需要在一批样品热处理后再分别进行制样观测。 由于样品本身的差异, 这种非原位的方法相比于原位实验研究将产生较大的误差。 同时, 非原位实验研究中, 一组样品之间退火时长的间隔从几小时到几十小时不等, 长时间的缺乏监控, 将大大增加生长过程中的不确定性。 而原位透射电子显微镜研究, 不但提供了实时观测Cu/Al IMC热生长的可能, 还可以更加精确地测量Cu/Al IMC生长。 精确的Cu/Al IMC生长公式, 对准确地预测Cu/Al引线键合的可靠性具有重大意义, 对Cu/Al引线键合产品的正确使用环境提供了指导, 甚至对芯片设计中散热标准提出了指导。 图 6 Cu/Al IMC 反应速率的自然对数 lnK 与退火温度T 的倒数关系 四、结论 本文基于原位高分辨透射电子显微镜实时观测了Cu/Al引线键合界面金属间化合物退火条件下的结构演变过程。 实验表明, 退火后CuAl IMC的主要产物为CuAl2 和Cu9Al4。 同时, 拟合计算得到了不同退火温度下Cu/Al金属间化合物的反应速率和激活能(23.8 kcal/mol), 给出了基于原位实验结果的更加精确的Cu/Al IMC生长公式, 为Cu/Al引线键合的应用、芯片散热设计和可靠性预测提供了指导。

    前天 65浏览
  • 接线图和原理图有什么区别

    本文主要介绍的是接线图和原理图有什么区别,我们以电气的原理图和接线图来做详细的解析。首先介绍的是电气原理图的

    03-03 68浏览
  • 详细解读!什么是计数器

    计数器是重要的电子器件、设备之一,所以我们有必要对计数器有所认识。在这篇文章中,小编将对计数器、计数器的作用、计数器的种类以及计数器的应用予以介绍。如果你对计数器相关内容具有兴趣,不妨继续往下阅读哦...

    02-26 80浏览
  • 电动汽车为何提速辣么快?从电机和发动机解析原理

    咱们今天来看看没有发动机,电动汽车是如何工作的,为何提速辣么快呢。对于燃油车来说,想进入4秒俱乐部,那需要做出多大的努力,而对于电动车而言,实现起来轻松太多了!如果详细叙述这个问题,就太复杂...

    02-20 16浏览
  • 三相逆变电路导通原理及死区问题分析

    文章目录 4.1.理论分析 4.2.实际波形 4.3.MOS关断时的尖峰电压问题 1.三相逆变电路 2.导通原理 3.方波六步换相时序分析 4.死区问题 5.带死区的互补载波电流流向分析 1.三相逆变电路 2.导通原理 如上图所示,为一相的逆变桥。上下MOS管不能同时导通,那么可以有几种控制方式: PWM控制上管,下管电平控制(恒高或者横低); PWM控制下管,上管电平控制; 上下管都是PWM控制; 某个管的控制可以是PWM控制和电平控制都有。 方式3称为互补载波,也就是上下管的PWM是互补的,这样才能不同时导通。 方式1和2这两种方式又称为单桥臂载波,在方波六步换相控制时使用较多。这两种方式中常用的是第1种方式,原因是MOS管用的是N管。上管的MOS管想要正常工作,需要给自举电容充电(注意是外部的自举电容,而非GS结电容)。如下图所示,为自举电容的充电电路。如果用方式1,即上管PWM下管电平,那么下管始终打开,不会影响自举电容的充电,自举电容充电速度快。如果用方式2,即上管电平下管PWM,那么在速度很低、PWM占空比很小的时候,下管的PWM占空比会影响自举电容的充电,有可能导致自举电容充电充不满,此时上管可能无法正常打开或者关闭。 PS:如果上管是P管,那么就不需要自举电容。但是P管价格贵,且功率相对N管低。 3.方波六步换相时序分析 根据霍尔跳变沿可以获得对6个MOS管的控制顺序,这里先假设直到这个控制顺序,为M1M2->M2M3->M3M4->M4M5->M5M6->M6M1->M1M2。先以M1M2导通为例,如下图随时,使用上管PWM下管电平控制的方式。 当M1的PWM处于ON的时候,电流流向如下: 当M1位OFF的时候,由于电机线圈为感性负载,所以需要续流,此时只能通过MOS管的体二极管进行续流,如下图所示。此时体二极管导通后会将UW等效的电流源两端电压钳位到0.7V,所以此时电流源两端压差很小,根据U=Ldi/dt可知放电时间会很长,故此时的续流称为慢续流。相对快续流而言,慢续流电流下降慢,维持力矩时间长。如果是快续流的话,绕组内会存在一段时间没有电流,就不会对外提供力矩了。 慢续流的方式靠MOS管的体二极管来续流,如果时间比较长那么体二极管发热大,续流损耗也变大。所以有的时候当M1关闭后可以打开M4,让续流经过MOS管的S到D,也就是使用Rdson来续流,这样损耗就会变小。此时的模式就是互补载波模式了。 4.死区问题 4.1.理论分析 对于上下管都使用PWM控制的方式,在波形跳边沿的地方,存在死区问题。由于MOS管的开关是对GS结电容进行充放电,当电压跳过GS阈值电压时,MOS管的开关状态就发生变化。那么如果PWM不加入死区控制,可能导致一个MOS还没关闭,另一个MOS就开通了,也就是同一桥臂的两个管子同时导通,电源短路。 此时解决办法是加入PWM死区,也就是让PWM1L提前变成OFF,让PWM1H延后变成ON。即同时增加两个波形都为OFF的时间,这样两个MOS管都处于关闭的状态,如下图所示。 这个死区时间在实现功能的基础上肯定是越小越好,因为死区时间太长的话PWM的最大占空比做不上去,电机的功率也就上不去。死区时间从单片机PWM到驱动电路再到MOS管的栅极都有一定的硬件延时,所以具体时间需要根据调试确定。可以通过提高MOS管的充放电速度来减小死区时间,但是可能会带来其他问题,比如震荡、EMC问题等。 此外死区时间的设置(注意是设置,不是真正的死区时间,真正的死区时间只与硬件电路有关)与载波频率也有关。因为载波频率越高,周期越小,相同的死区时间的情况下占空比就越小,电机的空滤就提不上去。所以有时候电机功率做不上去会通过降低载波的频率来提升电机功率。 一般载波频率在15KHZ到20KHZ,载频低了,电机会有噪音;载频高了,开关损耗太大。此时的死区时间初始值可设置为4us,然后在根据示波器调试确定最终的死区时间。 4.2.实际波形 如下图所示为实际的波形。黄色波形对应MOS管开通,可见他的开通已经增加了一段死区时间。黄色波形红圈圈出来的地方为米勒平台,一般可以认为在平台区MOS管就开通了。紫色波形对应MOS管关断,紫色波形红圈处有一个向上的凸起,这是因为同一桥臂的两个MOS管另种一个管子导通对另一个管子的影响,这个影响是由米勒效应导致的。 所以图中的波形已经比较危险了,紫色凸起再高一点就导致两个MOS同时导通了。所以实际调试中需要避免出现这种波形。 4.3.MOS关断时的尖峰电压问题 MOS关断的时候电流很短时间内变为0,有很高的di/dt,那么作用到电路的寄生电感上,很容易在DS端产生很高的L*di/dt这样的尖峰电压。 解决办法: 减缓MOS管的开关速度。本质上就是降低GS结电容的充放电速度,比如增加充放电回路的阻抗、并联GS电容、加大栅极电阻等。 在MOS管的DS端并联RC吸收电路。 以上两种方法尽量使用第一种方法进行解决。 5.带死区的互补载波电流流向分析 根据如下控制逻辑控制MOS管的通断。 先从红框分析,此时的电流流向如下: 在切换到下一个状态之前,M3和M6存在一个死区时间,如下图所示。 此时对应的电流流向如下图所示。此时M6关断,V相通过M3的体二极管续流。此时UV两相的压差被M3的体二极管钳位还是0.7V,所以V相的电流续流还是慢续流。 然后当M3打开的时候,如果前一时刻的电流续流没有结束,那么还会继续向上流,然后很快电流就向下流,所以可以忽略这里,直接认为M3导通的时候电流向下流即可,如下图所示。

    02-17 113浏览
  • 快速搞懂!单片机的同步通信和异步通信

    单片机通信:一文看懂同步通信和异步通信

    02-07 345浏览
  • 模拟量设备为什么偏爱用4~20mA传输信号?

    大家可能会非常熟悉RS232,RS485,CAN等工业上常用的总线,他们都是传输数字信号的方式。那么,我们用什么方式来传输模拟信号呢?工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,这些都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。工业上最广泛采用的是用4~20mA电流来传输模拟量。 采用电流信号的原因是不容易受干扰,因为工业现场的噪声电压的幅度可能达到数V,但是噪声的功率很弱,所以噪声电流通常小于nA级别,因此给4-20mA传输带来的误差非常小;电流源内阻趋于无穷大,导线电阻串联在回路中不影响精度,因此在普通双绞线上可以传输数百米;由于电流源的大内阻和恒流输出,在接收端我们只需放置一个250欧姆到地的电阻就可以获得0-5V的电压,低输入阻抗的接收器的好处是nA级的输入电流噪声只产生非常微弱的电压噪声。 上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。常取2mA作为断线报警值。电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,所以现在基本上将四线制变送器称之为三线制变送器。其实大家可能注意到, 4-20mA电流本身就可以为变送器供电,变送器在电路中相当于一个特殊的负载,这种变送器只需外接2根线,因而被称为两线制变送器。工业电流环标准下限为4mA,因此在量程范围内,变送器通常只有24V,4mA供电(因此,在轻负载条件下高效率的DC/DC电源(TPS54331,TPS54160),低功耗的传感器和信号链产品、以及低功耗的处理器(如MSP430)对于两线制的4-20mA收发非常重要)。这使得两线制传感器的设计成为可能而又富有挑战。 一般需要设计一个VI转换器,输入0-3.3v,输出4mA-20mA,可采用运放LM358,供电+12v。 我们系统地来看看模拟量设备为什么都偏爱用4~20mA传输信号~ 4-20mA. DC(1-5V.DC)信号制是国际电工委员会( IEC )过程控制系统采用的模拟信号传输标准。我国也采用这一国际标准信号制,仪表传输信号采用4-20mA.DC,接收信号采用1-5V.DC,即采用电流传输、电压接收的信号系统。 一般仪器仪表的信号电流都为4-20mA,指最小电流为4mA,最大电流为20mA 。传输信号时候,因为导线上也有电阻,如果用电压传输则会在导线内产生一定的压降,那接收端的信号就会产生一定的误差了,所以一般使用电流信号作为变送器的标准传输。 一、什么是4~20mA.DC(1~5V.DC)信号制? 4~20mA.DC(1~5V.DC)信号制是国际电工委员会(IEC):过程控制系统用模拟信号标准。我国从DDZ-Ⅲ型电动仪表开始采用这一国际标准信号制,仪表传输信号采用4~20mA.DC,联络信号采用1~5V.DC,即采用电流传输、电压接收的信号系统。 4~20mA电流环工作原理: 在工业现场,用一个仪表放大器来完成信号的调理并进行长线传输,会产生以下问题:第一,由于传输的信号是电压信号,传输线会受到噪声的干扰;第二,传输线的分布电阻会产生电压降;第三,在现场如何提供仪表放大器的工作电压也是个问题。 为了解决上述问题和避开相关噪声的影响,我们用电流来传输信号,因为电流对噪声并不敏感。4~20mA的电流环便是用4mA表示零信号,用20mA表示信号的满刻度,而低于4mA高于20mA的信号用于各种故障的报警。 二、4~20mA.DC(1~5V.DC)信号制的优点? 现场仪表可实现两线制,所谓两线制即电源、负载串联在一起,有一公共点,而现场变送器与控制室仪表之前的信号联络及供电仅用两根电线。因为信号起点电流为4mA.DC,为变送器提供了静态工作电流,同时仪表电气零点为4mA.DC,不与机械零点重合,这种“活零点”有利于识别断电和断线等故障。而且两线制还便于使用安全栅,利于安全防爆。 控制室仪表采用电压并联信号传输,同一个控制系统所属的仪表之间有公共端,便于检测仪表、调节仪表、计算机、报警装置配用,并方便接线。 现场仪表与控制室仪表之间的联络信号采用4~20mA.DC的理由是:因为现场与控制室之间的距离较远,连接电线的电阻较大,如果用电压信号远传,优于电线电阻与接收仪表输入电阻的分压,将产生较大的误差,而用恒流源信号作为远传,只要传送回路不出现分支,回路中的电流就不会随电线长短而改变,从而保证了传送的精度。 控制室仪表之间的联络信号采用1~5V.DC理由是:为了便于多台仪表共同接收同一个信号,并有利于接线和构成各种复杂的控制系统。如果用电流源作联络信号,当多台仪表共同接收同一个信号时,它们的输入电阻必须串联起来,这会使最大负载电阻超过变送仪表的负载能力,而且各接收仪表的信号负端电位各不相同,会引入干扰,而且不能做到单一集中供电。 采用电压源信号联络,与现场仪表的联络用的电流信号必须转换为电压信号,最简单的办法就是:在电流传送回路中串联一个250Ω的标准电阻,把4~20mA.DC转换为1~5V.DC,通常由配电器来完成这一任务。 三、为什么变送器选择4~20mA.DC作传送信号? 1、首先是从现场应用的安全考虑 安全重点是以防爆安全火花型仪表来考虑的,并以控制仪表能量为前提,把维持仪表正常工作的静态和动态功耗降低到最低限度。输出4~20mA.DC标准信号的变送器,其电源电压通常采用24V.DC,采用直流电压的主要原因是可以不用大容量的电容器及电感器,就只需考虑变送器与控制室仪表连接导线的分布电容及电感,如2mm2 的导线其分布电容为0.05μ/km左右;对于单线的电感为0.4mH/km左右;大大低于引爆氢气的数值,显然这对防爆是非常有利的。 2、传送信号用电流源优于电压源 因为现场与控制室之间的距离较远,连接电线的电阻较大时,如果用电压源信号远传,由于电线电阻与接收仪表输入电阻的分压,将产生较大的误差,如果用电流源信号作为远传,只要传送回路不出现分支,回路中的电流就不会随电线长短而改变,从而保证了传送的精度。 3、信号最大电流选择20mA的原因 最大电流20mA的选择是基于安全、实用、功耗、成本的考虑。安全火花仪表只能采用低电压、低电流,4~20mA电流和24V.DC对易燃氢气也是安全的,对于24V.DC氢气的引爆电流为200mA,远在20mA以上,此外还要综合考虑生产现场仪表之间的连接距离,所带负载等因素;还有功耗及成本问题,对电子元件的要求,供电功率的要求等因素。 4、信号起点电流选择4mA的原因 输出为4~20mA的变送器以两线制的居多,两线制即电源、负载串联在一起,有一公共点,而现场变送器与控制室仪表之间的信号联络及供电仅用两根电线。为什么起点信号不是0mA?这是基于两点:一是变送器电路没有静态工作电流将无法工作,信号起点电流4mA.DC,不与机械零点重合,这种“活零点”有利于识别断电和断线等故障。 四、4~20mA传感器的由来? 采用电流信号的原因是不容易受干扰、并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。 采用电流信号的原因是不容易受干扰,因为工业现场的噪声电压的幅度可能达到数V,但是噪声的功率很弱,所以噪声电流通常小于nA级别,因此给4-20mA传输带来的误差非常小;电流源内阻趋于无穷大,导线电阻串联在回路中不影响精度,因此在普通双绞线上可以传输数百米;由于电流源的大内阻和恒流输出,在接收端我们只需放置一个250欧姆到地的电阻就可以获得0-5V的电压,低输入阻抗的接收器的好处是nA级的输入电流噪声只产生非常微弱的电压噪声。 上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。常取2mA作为断线报警值。电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。当然,电流输出可以与电源公用一根线公用VCC或者GND,可节省一根线,称之为三线制变送器。其实大家可能注意到,4-20mA电流本身就可以为变送器供电。变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。显示仪表只需要串在电路中即可。这种变送器只需外接2根线,因而被称为两线制变送器。工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。 因此、4-20mA的信号输出一般不容易受干扰而且安全可靠、所以工业上普遍使用的都是二线制4-20mA的电源输出信号。但为了能更好的处理传感器的信号、目前还有更多其它形式的输出信号:3.33MV/V;2MV/V;0-5V; 0-10V等。 另附一张4到20mA转电压信号的简单电路图: 这张图使用一个250欧姆的电阻将4到20mA的电流信号转换成1到5V的电压信号,然后使用一个RC滤波加一个二极管接到单片机的AD转换引脚。 图中稳压二极管DW1-5V的作用是:利用稳压二极管在工作电压达到其反向软击穿电压的阀值时而导通的特性(不是永久性损坏),将进入单片机5A60S2的第8脚P1.7口的电压限制在5v以下,从而对单片机的采样输入口的输入信号起到一个钳制作用(将电压限制在5v的测量范围以内),另外还对输入口起到一个保护的作用。在电子学上通常将这个稳压二极管的作用叫钳位稳压二极管。

    01-13 370浏览
  • 从简单到复杂分享交流接触器常用接线电路图和实物图

    今天分享一些交流接触器常用接线电路图和实物图,从简单到复杂。

    01-03 122浏览
  • 常见的串口类型介绍

    核桃发现,群里的小伙伴还是有很多搞不明白“串口”的概念!有一部分小伙伴认为“串口”只是单片机的UART或者USART。但事实上单片机的UART和USART仅仅只是“串口”的一种类型,也就是我们常用TTL。常见的串口类型有以下几种:(1)TTL(全双工,逻辑0:0~0.5V,逻辑1:2.4~5V):电压的范围通常在0~3.3V或者0V~5V,主要应用在嵌入式单机系统中。但是这个TTL的电压和速率都比较低,所以就注定了它不适合用于长距离的通讯传输,所以一般更适合板级通讯!(2)RS-232(全双工,逻辑0:+3~+15V,逻辑1:-15V~-3V):典型电压为±12V,电压比TTL高,传输距离比TTL远,最大理论传输距离在15米。但由于232采用的是单端传输的方式,而不是差分的传输方式,所以更容易受到外部干扰的影响。(4)RS-422/RS-485(半双工):采用差分的传输方式,更加稳定,适合长距离传输,最大可达1200米,但422只能有一个发送器和最多10个接收器,485最多可达32个设备。图片来源于网络总结表图片来源于网络在实际的设计中,如果外接设备通讯方式采用的是232/422/485方式,那就不能直接接单片机的UART/USART,必须要加相应的电平转换芯片。图片

    01-03 194浏览
正在努力加载更多...
广告