关于电阻的使用,为什么会有这么一条经验法则?
adi 2020-08-14

摘要

按照许多年前老师的教导,我们会在运算放大器的两个输入端放上相等的阻抗。本文探究为什么会有这么一条经验法则,以及我们是否应当遵循这种做法。

老师的教导

如果您是在741运算放大器1横行天下的时代长大的,那么平衡运算放大器输入端电阻的观念必定已扎根在您的脑海中。随着时间的流逝,由于不同电路技术和不同IC工艺的出现,这样做可能不再是对的。事实上,它可能引起更大直流误差和更多噪声,使电路更不稳定。我们以前为什么要那样做?什么变化导致我们现在这样做可能是错误的?

在二十世纪六十年代和七十年代,第一代运算放大器采用普通双极性工艺制造。为了获得合理的速度,差分对尾电流一般在10 µA到20 µA范围内。

而β值为40到70,故输入偏置电流在1 μA左右。然而,晶体管匹配度并不那么高,所以输入偏置电流不相等,导致输入偏置电流之间有10%到20%的偏差(称为“输入失调电流”)。在同相接地输入端增加一个与输入电阻R1和反馈电阻R2的并联组合相等的电阻(图1中的R3),可以让阻抗相等。通过一些计算可以证明,误差降至Ioffset × Rfeedback。由于Ioffset为Ibias的10%到20%,这将有助于降低输出失调误差。

经典反相放大器图1. 经典反相放大器

直流误差

为降低双极性运算放大器的输入偏置电流,许多运算放大器设计集成了输入偏置电流消除功能。OP07就是一个例子。输入偏置电流消除功能的增加2使偏置电流大大降低,但输入失调电流可能为剩余偏置电流的50%到100%,所以增加电阻的作用非常有限。某些情况下,增加电阻反而可能导致输出误差提高。

噪声

电阻热噪声的计算公式为√4kTRB,故1 kΩ电阻会有4 nV/√Hz的噪声。增加电阻会增加噪声。图2中,出人意料的是,虽然909 Ω补偿电阻是值最低的电阻,但由于从该节点到输出端的噪声增益,它给图2输出端贡献的噪声最多。R1引起的输出噪声为40 nV/√Hz,R2为12.6 nV/√Hz,R3为42 nV/√Hz。因此,请勿使用电阻。另一方面,如果运算放大器采用双电源供电,并且一个电源先于另一个电源上电,那么ESD网络可能发生闩锁问题。这种情况下,可能希望增加一定的电阻来保护器件。但若使用的话,应在电阻上放置一个旁路电容以减少电阻的噪声贡献。

 噪声分析图2. 噪声分析

稳定性

所有运算放大器都有一定的输入电容,包括差模和共模。如果运算放大器连接为跟随器,并且在反馈路径中放入一个电阻以平衡阻抗,那么系统可能容易发生振荡。原因是:大反馈电阻、运算放大器的输入电容和PC板上的杂散电容会形成一个RC低通滤波器(LPF)。此滤波器会引起相移,并降低闭环系统的相位裕量。如果降低得太多,运算放大器就会振荡。一位客户在一个1 Hz Sallen-Key低通滤波器电路中使用AD8628 CMOS运算放大器。由于转折频率较低,电阻和电容相当大(参见图3)。输入电阻为470 kΩ,所以客户在反馈路径中放入一个470 kΩ电阻。此电阻与8 pF的输入电容(参见图4)一起提供一个42 kHz的极点。AD8628的增益带宽积为2 MHz,因此它在42 kHz仍有大量增益,并发生了轨到轨振荡。把470 kΩ电阻换成0 Ω跳线即解决了问题。因此,反馈路径中应避免使用大电阻。这里,何者为大取决于运算放大器的增益带宽。对于高频运算放大器,例如增益带宽积超过400 MHz的
ADA4817-1,1 kΩ反馈电阻就称得上是大电阻。务必阅读数据手册以了解其中的建议。

图3. 您所见图4. 电子所见

结语

多年来的实践会产生一些有用的经验法则。审核设计时,最好仔细检视这些经验法则,判定它们是否仍然适用。关于是否需要增加平衡电阻,如果是带有输入偏置电流消除功能的CMOS、JFET或双极型运算放大器,那么可能不需要增加。

读完本文后,您可能会意外提问是关于噪声的。请回答以下三个问题:

问题1:以下哪个噪声是在电阻中产生的?

• 爆米花噪声
• 红噪声
• 粉红噪声
• 1/f噪声
• 白噪声
• 约翰逊噪声
• 奈奎斯特噪声
• 白噪声

问题2:室温(20°C)条件下,等效噪声带宽为20 kHz时,10 kΩ电阻产生的均方根噪声是多少?

问题3:24位音频ADC的输入电压范围为2.5 V时,用此VNOISE可以获得多少闪烁位?

作者简介:Harry Holt []是ADI公司的资深应用工程师。过去四年在核心应用部门工作,此前六年在精密放大器部门工作。之前他曾在美国国家半导体公司工作了28年,从事各种产品的现场和工厂应用工作,包括数据转换器、运算放大器、基准源、音频编解码器和FPGA。他拥有圣何塞州立大学电气工程学士学位(BSEE),并且是国家工程荣誉协会(Tau Beta Pi)终身会员和IEEE高级终身会员。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • 元器件
  • 电阻
  • 电容
  • 电感
  • 继电器的应用细节

    继电器的应用,相信大家都知道,在电路中只要给它供电、断电也就可以工作了。 然而,它的应用细节,不知道大家有没注意 。下面谈谈我的观点 一、现在流行的接法,如图。 图中,继电器的线圈经过Q1作为开关,使其导通与断开。D1作为续流,消耗线圈中的能量。

    8小时前
  • 电感是由什么组成的?

    电感器是能够把电能转化为磁能而存储起来的元件。 电感器的结构类似于变压器,但只有一个绕组。电感器具有一定的电感,它只阻碍电流的变化。如果电感器在没有电流通过的状态下,电路接通时它将试图阻碍电流流过它;如果电感器在有电流通过的状态下,电路断开

    7小时前
  • 解析三极管三个工作状态

    什么正偏,反偏都统统滚蛋!!! 三极管有三个工作状态;截止、放大、饱和;放大状态很有学问也很复杂,多用于集成芯片,比如运放,现在不讨论;其实对信号的放大我们通常用运放处理。三极管更多的是当做一个开关管来使用,且只有截止、饱和两个状态; 截止状

    昨天
  • 20个硬件电子问答

    1、晶体管基本放大电路有共射、共集、共基三种接法,请简述这三种基本放大电路的特点。 共射:共射放大电路具有放大电流和电压的作用,输入电阻大小居中,输出电阻较大,频带较窄,适用于一般放大。 共集:共集放大电路只有电流放大作用,输入电阻高,输出电

    昨天
  • IGBT短路特性

    1、器件结构参数: 2、短路特性: 工作原理: IGBT是双极型三极管和MOS管结合在一起的产物,双极型三极管具有低频(10KHz以下)大电流能力,MOSFET具有高频(100KHz以上)小电流特点。IGBT兼有两种器件的优点,电压控制驱动,通流能力强,频率最高可使用到100

    04-09
  • 二极管结电容和反向恢复时间,到底是怎么来的呢?

    结电容 先说结电容。 二极管是两个管脚的器件,说来不怕丢人,我曾误以为:二极管的结电容就是它的两个管脚形成的寄生电容,因为两个极板放到一起,就构成了一个电容。 当然了,两个管脚确实会形成电容,不过这个电容很小,相比结电容来说,可以忽略不计了。

    04-09
  • 失效电子元器件诊断分析的一般程序

    器件一旦坏了,千万不要敬而远之,而应该如获至宝。 开车的人都知道,哪里最能练出驾驶水平?高速公路不行,只有闹市和不良路况才能提高水平。社会的发展就是一个发现问题解决问题的过程,出现问题不可怕,但频繁出现同一类问题是非常可怕的。   失效分析基本

    04-08
  • 不用单片机实现充电指示电路

    有一个充电电路的设计要求是这样的,只有一个LED指示灯,充电时,LED闪烁,充满电后LED长亮。根据以往的经验,一般充电IC都会设计一个充电状态指示脚,这个脚是开漏输出,可以用一个电阻和一个LED串联起来接在这个充电状态指示脚和电源之间,这样就可以起到充

    04-08
  • 如何读取贴片电阻代码的值(计算实例)

    来源 | DF创客社区 电阻在我们的工作中比较常见,别小看这不起眼的电阻,里面有很多学问。 贴片电阻(SMD Resistor),又名片式固定电阻器,是一种设计为贴片安装的电阻器。 这些SMD电阻器通常比传统的电阻器小得多,因此在电路板上占用的空间也小得多。 贴片电

    03-30
  • IC封装图片大全,你都能认全吗?

    IC封装图片大全 推荐阅读: 点击下方『面包板社区』卡片关注我们, 每天学点电子技术干货 ▲ 点击关注,后台回复"关键词",领取300 G学习资料包! 商务合作 | 广告投放 | 开发板赞助 | 转载开白 请在公众号后台回复  合作  投稿|请发送到:nick.zong@aspencor

    03-29
  • 电路板元器件损坏的故障特点及维修

    一、工控电路板电容损坏的故障特点及维修 电容损坏引发的故障在电子设备中是最高的,其中尤其以电解电容的损坏最为常见。 电容损坏表现为:容量变小;完全失去容量;漏电;短路。 电容在电路中所起的作用不同,引起的故障也各有特点。在工控电路板中,数字电

    03-29
  • 各类电容及各类应用的原理解析

    1、电容充放电实验 2、电容工作原理 3、电容滤波电路工作原理 4、电容式液位计 5、电容式传声器工作原理 6、电容式液位计原理 7、电容传感器原理 8、电容式耳机原理 9、湿敏电容原理 10、电容加速度计原理 关注『面包板社区』,后台回复"技术关键词",领取300

    03-25
下载排行榜
更多
广告
X
广告