关于电阻的使用,为什么会有这么一条经验法则?
2020-08-14

摘要

按照许多年前老师的教导,我们会在运算放大器的两个输入端放上相等的阻抗。本文探究为什么会有这么一条经验法则,以及我们是否应当遵循这种做法。

老师的教导

如果您是在741运算放大器1横行天下的时代长大的,那么平衡运算放大器输入端电阻的观念必定已扎根在您的脑海中。随着时间的流逝,由于不同电路技术和不同IC工艺的出现,这样做可能不再是对的。事实上,它可能引起更大直流误差和更多噪声,使电路更不稳定。我们以前为什么要那样做?什么变化导致我们现在这样做可能是错误的?

在二十世纪六十年代和七十年代,第一代运算放大器采用普通双极性工艺制造。为了获得合理的速度,差分对尾电流一般在10 µA到20 µA范围内。

而β值为40到70,故输入偏置电流在1 μA左右。然而,晶体管匹配度并不那么高,所以输入偏置电流不相等,导致输入偏置电流之间有10%到20%的偏差(称为“输入失调电流”)。在同相接地输入端增加一个与输入电阻R1和反馈电阻R2的并联组合相等的电阻(图1中的R3),可以让阻抗相等。通过一些计算可以证明,误差降至Ioffset × Rfeedback。由于Ioffset为Ibias的10%到20%,这将有助于降低输出失调误差。

经典反相放大器图1. 经典反相放大器

直流误差

为降低双极性运算放大器的输入偏置电流,许多运算放大器设计集成了输入偏置电流消除功能。OP07就是一个例子。输入偏置电流消除功能的增加2使偏置电流大大降低,但输入失调电流可能为剩余偏置电流的50%到100%,所以增加电阻的作用非常有限。某些情况下,增加电阻反而可能导致输出误差提高。

噪声

电阻热噪声的计算公式为√4kTRB,故1 kΩ电阻会有4 nV/√Hz的噪声。增加电阻会增加噪声。图2中,出人意料的是,虽然909 Ω补偿电阻是值最低的电阻,但由于从该节点到输出端的噪声增益,它给图2输出端贡献的噪声最多。R1引起的输出噪声为40 nV/√Hz,R2为12.6 nV/√Hz,R3为42 nV/√Hz。因此,请勿使用电阻。另一方面,如果运算放大器采用双电源供电,并且一个电源先于另一个电源上电,那么ESD网络可能发生闩锁问题。这种情况下,可能希望增加一定的电阻来保护器件。但若使用的话,应在电阻上放置一个旁路电容以减少电阻的噪声贡献。

 噪声分析图2. 噪声分析

稳定性

所有运算放大器都有一定的输入电容,包括差模和共模。如果运算放大器连接为跟随器,并且在反馈路径中放入一个电阻以平衡阻抗,那么系统可能容易发生振荡。原因是:大反馈电阻、运算放大器的输入电容和PC板上的杂散电容会形成一个RC低通滤波器(LPF)。此滤波器会引起相移,并降低闭环系统的相位裕量。如果降低得太多,运算放大器就会振荡。一位客户在一个1 Hz Sallen-Key低通滤波器电路中使用AD8628 CMOS运算放大器。由于转折频率较低,电阻和电容相当大(参见图3)。输入电阻为470 kΩ,所以客户在反馈路径中放入一个470 kΩ电阻。此电阻与8 pF的输入电容(参见图4)一起提供一个42 kHz的极点。AD8628的增益带宽积为2 MHz,因此它在42 kHz仍有大量增益,并发生了轨到轨振荡。把470 kΩ电阻换成0 Ω跳线即解决了问题。因此,反馈路径中应避免使用大电阻。这里,何者为大取决于运算放大器的增益带宽。对于高频运算放大器,例如增益带宽积超过400 MHz的
ADA4817-1,1 kΩ反馈电阻就称得上是大电阻。务必阅读数据手册以了解其中的建议。

图3. 您所见图4. 电子所见

结语

多年来的实践会产生一些有用的经验法则。审核设计时,最好仔细检视这些经验法则,判定它们是否仍然适用。关于是否需要增加平衡电阻,如果是带有输入偏置电流消除功能的CMOS、JFET或双极型运算放大器,那么可能不需要增加。

读完本文后,您可能会意外提问是关于噪声的。请回答以下三个问题:

问题1:以下哪个噪声是在电阻中产生的?

• 爆米花噪声
• 红噪声
• 粉红噪声
• 1/f噪声
• 白噪声
• 约翰逊噪声
• 奈奎斯特噪声
• 白噪声

问题2:室温(20°C)条件下,等效噪声带宽为20 kHz时,10 kΩ电阻产生的均方根噪声是多少?

问题3:24位音频ADC的输入电压范围为2.5 V时,用此VNOISE可以获得多少闪烁位?

作者简介:Harry Holt []是ADI公司的资深应用工程师。过去四年在核心应用部门工作,此前六年在精密放大器部门工作。之前他曾在美国国家半导体公司工作了28年,从事各种产品的现场和工厂应用工作,包括数据转换器、运算放大器、基准源、音频编解码器和FPGA。他拥有圣何塞州立大学电气工程学士学位(BSEE),并且是国家工程荣誉协会(Tau Beta Pi)终身会员和IEEE高级终身会员。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
1
评论
  • 相关技术文库
  • 元器件
  • 电阻
  • 电容
  • 电感
  • 屏蔽系统的选型

      1.屏蔽技术的发展  屏蔽布线系统源于欧洲,它是在普通非屏蔽布线系统的外面加上金属屏蔽层,利用金属屏蔽层的反射、吸收及趋肤效应实现防止电磁干扰及电磁辐射的功

    前天
  • 电子镇流器电磁干扰的抑制措施

      1电子镇流器  电子镇流器(Electricalballast),是镇流器的一种,是指采用电子技术驱动电光源,使之产生所需照明的电子设备。与之对应的是电感式

    前天
  • bc547是什么三极管?

    bc547是什么三极管?我们基本上认为BC547是个普通的NPN结的三极管;而在BC547基础知识里面bc547参数与bc547引脚图是比较重要的。下面我将讨论

    前天
  • 温度感测难题的解决

    自集成电路出现以来,IC温度传感器一直是设备设计的一部分。设计人员想尽办法减少温度对芯片系统的影响,集成温度传感器已可轻松解决-55至200˚C温度范围内的大部

    05-26
  • 压缩式压电加速度传感器简介

      【摘要】简述了压电加速度传感器的结构原理。说明了该传感器灵敏度的线性度问题,分析了其正向反向灵敏度的差异与“饱和现象”,以便在生产、鉴定与使用时加以注意。&

    05-25
  • 电路中电阻和截面积的确成反比

    电路中电阻和截面积的确成反比,但是,在某些情况下,自由电子又会趋近于导线表面运动,这时的电阻和截面不完全成反比。电流流过导线存在稳定阶段和变化阶段。单根导线,相

    05-25
  • 如何正确选择、使用磁珠

    磁珠专用于抑制信号线、电源线上的高频噪声和尖峰干扰,还具有吸收静电脉冲的能力。   磁珠是用来吸收超高频信号,象一些RF电路,PLL,振荡电路,含超高频存储器电

    05-25
  • 什么是压电效应?什么是重力传感器

    重力传感器是根据压电效应的原理来工作的。所谓的压电效应就是 “对于不存在对称中心的异极晶体加在晶体上的外力除了使晶体发生形变以外,还将改变晶体的极化状态,在晶体

    05-25
  • SHTl5型智能传感器的性能和特点

    针对温/湿度对弹药储存的影响和传统弹药库温,湿度监控系统的弊端,采用SHTl5型智能传感器设计了一套智能监控系统.对系统的结构原理和软件设计进行了分析。1引言弹

    05-25
  • 场效应管常见问题与解答

    [导读]1 场效应管的性能与双极型三极管比较具有哪些特点?答:场效应管是另一种半导体放大器件。在场效应管中只是多子参与导电,故称为单极型三极管;而普通三极管参与

    05-24
  • 模电基础知识50问

    [导读]1、半导体材料制作电子器件与传统的真空电子器件相比有什么特点?答:频率特性好、体积小、功耗小,便于电路的集成化产品的袖珍化,此外在坚固抗震可靠等方面也特

    05-24
  • 二极管三极管电阻电容选型资料

    [导读]感谢网友整理的二极管三极管电阻电容选型资料,下载挺多的这里分享给大家三极管选型与使用.pdf二极管选型与使用.pdf 电阻选型与使用.pdf电容选型与应

    05-24
下载排行榜
更多
EE直播间
更多
广告