单目标跟踪可提供有关目标当前位置、速度和加速度的连续且准确的数据,所有这些数据都可能不断变化。为实现此目的,通常针对距离、多普勒频率和角度建立单独的半独立跟踪回路。
基本功能
跟踪环路可分为四个基本功能:测量,滤波,控制和反馈。

测量是确定参数的最新值与雷达的当前参数之间的差异,这便是跟踪误差。
滤波处理连续测量,以最小化由于目标闪烁、热搅动和其他干扰源引起的随机变化(噪声)。跟踪精度主要取决于如何有效地进行过滤。跟踪滤波器可以被认为是低通滤波器,其关键参数是截止频率和增益。
这些约束不断根据信噪比、目标的潜在机动以及雷达承载飞机的实际机动进行调整,以消除尽可能多的噪声而不会引入过多的延时(特别是在机动过程中)。控制是滤波器输出的计算的命令的生成,以减少跟踪误差(尽可能接近零)。
反馈是给出命令的硬件或软件的操作。响应和参数的当前实际值之间的差异反馈到输入,关闭循环以便重复整个过程。 通过连续迭代,可以获得非常高的精度跟踪参数。
改进距离估计
通过使用称为早期门、后期门的技术,可以改善对单个目标的距离的估计。距离门被分成两个部分(或门),其中一个部分相对于另一部分移动半个距离门。因此,目标可以同时出现在两个门中,如图所示。

目标位于距离门的中心,因此其响应在早期和后期门之间被平均分配。如果更多的目标回波位于早期门中而不是后期门中,则在早期门中测量的电压将更大。这被称为距离判别式。 因此,通过测量早期和后期门中的响应之间的电压差,更精确地确定目标位置,其精度优于距离分辨率。

距离跟踪回路
距离跟踪回路测量目标的当前范围,并保持以目标回波为中心的距离区间(隔离目标以进行多普勒和角度跟踪)。跟踪误差



为了使距离门保持在目标回波的中心,通过测量两个距离门




在距离判别和先前的距离门命令的基础上,距离滤波器产生目标距离和距离速率的最佳估计、距离加速度的度量,以及新的距离门。

新的距离门是对下一个目标回波进行采样时目标距离的预测。这是通过获取滤波器对目标范围和范围速率的最新估计值,并将其外推以计算新距离来计算的。
为了执行距离门控命令,首先针对雷达特性(例如,采样时间粒度)和经过接收器和脉冲展宽低通滤波器的脉冲形状的失真来校正预测目标范围。 然后将预测转换为从紧接在前的发送脉冲的尾随(或前沿)边缘测量的时间单位,并因此转换为下一个回波的估计到达时间。

改进多普勒估计
目标多普勒的估计以概念上非常类似于刚刚描述的改进范围位置的方式得到改善。 使用两个速度(多普勒)门代替两个距离门以产生改进的多普勒估计。速度门可以形成在它们中的任一个或两个中。
最简单的方法是检查两个相邻多普勒滤波器的交叉点,称为低频和高频滤波器(多普勒等效于早期和后期距离门)。速度门对齐中的任何错误都表现为这些滤波器输出之间的差异。
多普勒或速度判别式是通过取输出幅度之间的差值


如果脉冲重复频率(PRF)小于目标的多普勒频率,则必须将PRF的一些倍数n加到该总和上。
多普勒或速度滤波器的功能几乎与距离滤波器的功能完全相同。 速度滤波器的输出只是对目标的距离速率和距离加速度的更精确估计。
多普勒跟踪回路
该回路通过保持“速度门”以目标的多普勒频率为中心来隔离目标的角度跟踪返回。
基于速度滤波器的最新距离速率和距离加速度估计,产生速度门命令。它预测了当形成下一组多普勒滤波器时目标的多普勒频率。

该命令应用于可变射频振荡器。 其输出与接收信号混合,从而移动接收信号的频率,使得目标的预测多普勒频率将以速度门为中心。 振荡器频率和速度门固定频率之和是目标预测的多普勒频率。