7个常用接口类型的关键点
0 2023-03-23

我们知道,在电路系统的各个子模块进行数据交换时可能会存在一些问题导致信号无法正常、高质量地“流通”,例如有时电路子模块各自的工作时序有偏差(如CPU与外设)或者各自的信号类型不一致(如传感器检测光信号)等,这时我们应该考虑通过相应的接口方式来很好地处理这个问题。

下面就电路设计中7个常用的接口类型的关键点进行说明一下:

(1)TTL电平接口:

这个接口类型基本是老生常谈的吧,从上大学学习模拟电路、数字电路开始,对于一般的电路设计,TTL电平接口基本就脱不了“干系”!它的速度一般限制在30MHz以内,这是由于BJT的输入端存在几个pF的输入电容的缘故(构成一个LPF),输入信号超过一定频率的话,信号就将“丢失”。它的驱动能力一般最大为几十个毫安。正常工作的信号电压一般较高,要是把它和信号电压较低的ECL电路接近时会产生比较明显的串扰问题。

(2)CMOS电平接口:

我们对它也不陌生,也是经常和它打交道了,一些关于CMOS的半导体特性在这里就不必啰嗦了。许多人都知道的是,正常情况下CMOS的功耗和抗干扰能力远优于TTL。但是!鲜为人知的是,在高转换频率时,CMOS系列实际上却比TTL消耗更多的功率,至于为什么是这样,请去问半导体物理理论吧。由于CMOS的工作电压目前已经可以很小了,有的FPGA内核工作电压甚至接近1.5V,这样就使得电平之间的噪声容限比TTL小了很多,因此更加加重了由于电压波动而引发的信号判断错误。众所周知,CMOS电路的输入阻抗是很高的,因此,它的耦合电容容量可以很小,而不需要使用大的电解电容器了。由于CMOS电路通常驱动能力较弱,所以必须先进行TTL转换后再驱动ECL电路。此外,设计CMOS接口电路时,要注意避免容性负载过重,否则的话会使得上升时间变慢,而且驱动器件的功耗也将增加(因为容性负载并不耗费功率)。

(3)ECL电平接口:

这可是计算机系统内部的老朋友啊!因为它的速度“跑”得够快,甚至可以跑到几百MHz!这是由于ECL内部的BJT在导通时并没有处于饱和状态,这样就可以减少BJT的导通和截止时间,工作速度自然也就可以提上去了。But,这是要付出代价的!它的致命伤:功耗较大!它引发的EMI问题也就值得考虑了,抗干扰能力也就好不到哪去了,要是谁能够折中好这两点因素的话,那么他(她)就该发大财了。还有要注意的是,一般ECL集成电路是需要负电源供电的,也就是说它的输出电压为负值,这时就需要专门的电平移动电路了。

(4)RS-232电平接口:

玩电子技术的基本没有谁不知道它的了(除非他或她只是电子技术专业的“门外汉”)。它是低速串行通信接口标准,要注意的是,它的电平标准有点“反常”:高电平为-12V,而低电平为+12V。So,当我们试图通过计算机与外设进行通信时,一个电平转换芯片MAX232自然是少不了的了。但是我们得清醒地意识到它的一些缺点,例如数据传输速度还是比较慢、传输距离也较短等。

(5)差分平衡电平接口:

它是用一对接线端A和B的相对输出电压(uA-uB)来表示信号的,一般情况下,这个差分信号会在信号传输时经过一个复杂的噪声环境,导致两根线上都产生基本上相同数量的噪声,而在接收端将会把噪声的能量给抵消掉,因此它能够实现较远距离、较高速率的传输。工业上常用的RS-485接口采用的就是差分传输方式,它具有很好的抗共模干扰能力。

(6)光隔离接口:

光电耦合是以光信号为媒介来实现电信号的耦合和传递的,它的“好处”就是能够实现电气隔离,因此它有出色的抗干扰能力。在电路工作频率很高的条件下,基本只有高速的光电隔离接口电路才能满足数据传输的需要。有时为了实现高电压和大电流的控制,我们必须设计和使用光隔离接口电路来连接如上所述的这些低电平、小电流的TTL或CMOS电路,因为光隔离接口的输入回路和输出回路之间可以承受几千伏特的高压,足以满足一般的应用了。此外,光隔离接口的输入部分和输出部分必须分别采用独立的电源,否则的话还是有电气联系,也就不叫隔离了。

(7)线圈耦合接口:

它的电气隔离特性好,但是允许的信号带宽有限。例如变压器耦合,它的功率传输效率是非常高的,输出功率基本接近其输入功率,因此,对于一个升压变压器来说,它可以有较高的输出电压,但是却只能给出较低的电流。此外,变压器的高频和低频特性并不让人乐观,但是它的最大特点就是可以实现阻抗变换,当匹配得当时,负载可以获得足够大的功率,因此,变压器耦合接口在功率放大电路设计中很“吃香”。 

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • 硬件
  • 原理图
  • 信号完整性
  • EMI
  • 都说透彻理解Linux内存管理非常困难!总结Linux内存管理知识!

    微信公众号:奔跑吧linux社区 加奔跑吧微信群请先加微信:runninglinuxkernel 欢迎订阅奔跑吧配套旗舰篇视频节目:https://weidian.com/?userid=1352872851 这篇对《奔跑吧Linux内核》第一版的内存管理 做了很棒的笔记和总结。《奔跑吧Linux内核》第一版各大

    3小时前
  • 电动汽车电池管理方案介绍

            电池管理系统(BMS)是一个本世纪才诞生的新产品,因为电化学反应的难以控制和材料在这个过程中性能变化的难以捉摸,所以才需要这么一个管家来时刻监督、调整、限制电池组的行为,以保障使用安全,其主要功能为: 1. 实时监测电池状态。通过检测电池

    3小时前
  • 关于POE供电的几种常见问题!

    听说99%的同学都来这里充电吖 POE交换机已经很普遍了,我们来看下POE经常出现的问题有哪些。 近年来,PoE供电技术的发展,从百兆到千兆,再到全千兆,PoE供电技术的发展势头越来越强劲。凭借简化用电设备的安装和部署、节能,安全等一系列优势,PoE供电成为无

    3小时前
  • 8种常见的网络故障现象、分析与解决

    听说99%的同学都来这里充电吖 故障1:交换机刚加电时网络无法通信 【故障现象】 交换机刚刚开启的时候无法连接至其他网络,需要等待一段时间才可以。另外,需要使用一段时间之后,访问其他计算机的速度才快,如果有一段时间不使用网络,再访问的时候速度又会

    4小时前
  • 晶振如何选型及失效分析

    晶振的选型考量和失效分析 我们知道晶振有许多分类,主要分为无源晶振和有源晶振,无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来;有源晶振是一个完整的谐振振荡器。实际上就是说,无源晶振实际上应该叫做晶体,有源晶振正是我们常说的晶振

    4小时前
  • 非常实用的MOSFET选型及应用指南

    实用MOSFET的类别、选型及应用指南 MOSFET是场效应管的一种,属于绝缘栅型场效应晶体管,全称为金属-氧化物半导体场效应晶体管。如图1为MOSFET的结构图,是利用电场来在栅极形成载流子沟道来沟通源极和漏极。 图 1 MOS的一般结构 MOSFET可以被制造成增强型(

    4小时前
  • 设计一款电动汽车逆变器用IGBT驱动电源及测试其可靠性

    欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 905723370 高可靠新能源行业顶尖自媒体 在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注我们,搜索微信公众号:电力电子技术与新能源(Micro_Grid

    4小时前
  • IGBT与MOSFET的驱动参数该如何计算?

    欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 905723370 高可靠新能源行业顶尖自媒体 在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注我们,搜索微信公众号:电力电子技术与新能源(Micro_Grid

    4小时前
  • 怎样正确使用过压保护压敏电阻器

    压敏电阻的工作原理大致分为一下两种:①压敏电阻当受到压力时或者电压低于它的阈值,流过它的电流时最小的,它就相

    10小时前
  • 什么是dB?

    dB-分贝是射频人口头经常用到的一个词汇,它的英文全称是Decibe,简写为dB。我们常说“回波损耗是多少dB?”,“插入损耗是多少dB?”,“发射功率是多少dBm?”,“无源交调是多少dBc?”,“天线增益是多少dBi?”...... 这么多的dB贯穿射频人的日常工作中

    10小时前
  • 什么是回波损耗?什么是插入损耗?

    今天再接着讲一个老生常谈的话题——什么是回波损耗?什么又是插入损耗? 这个貌似很容易回答,回波损耗吗,就是Return Loss,缩写为RL,S11,插入损耗就是 Insertion Loss,IL,S21。 确实没错,就是这么简单。但是为什么叫做回波呢?为什么又叫做插入呢?今

    11小时前
  • 还记得只知道吃功率的衰减器吗?

    在射频电路设计中,尤其是一些通过式元件的设计,我们通常希望元件的插损尽可能地小,尽可能的让更多的来之不易的射频功率通过去。但是有些时候,我们有不希望功率太大,比如在一些测试上,功率太大,有可能把造成测试仪器的损坏。这时,就用会用到这个吃货—

    11小时前
下载排行榜
更多
广告