单电源差分输入并放大的应用
衡丽科技','衡丽科技 2024-05-17

1、运放在有源滤波中的应用



上图是典型的有源滤波电路(赛伦-凯 电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。
该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。其中电阻R280是防止输入悬空,会导致运放输出异常。


滤波最常用的3种二阶有源低通滤波电路为:巴特沃兹,单调下降,曲线平坦最平滑
巴特沃兹低通滤波中 用的最多的是赛伦凯乐电路,即仿真的该电路。
一个滤波器,要知道其截至频率是多少,或者能写出传递函数和频率响应也可以。
如果该滤波器还有放大功能,要知道该滤波器的增益是多少。



当两级RC电路的电阻、电容值相等时,叫赛伦凯电路,在二阶有源电路中引入一个负反馈,目的是使输出电压在高频率段迅速下降。
二阶有源低通滤波电路的通带放大倍数为 1+Rf/R1 ,与一阶低通滤波电路相同;




截止频率为


注明,m的单位为欧姆, N的单位为 u



所以计算得出 截止频率为


切比雪夫 ,迅速衰减,但通带中有纹波;


贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。



2、运放在电压比较器中的应用



电压比较


上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。

该电路实际上是过零比较器和深度放大电路的结合。
将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。
该电路中还有一个关键器件的阻值要注意,那就是R275,R275决定了方波的上升速度。

3、恒流源电路的设计



如图所示,恒流原理分析过程如下:


U5B(上图中下边的运放)为电压跟随器,故V1=V4;
由运算放大器的虚短原理,对于运放U4A(上图中上边的运放)有:V3=V5;


有以上等式组合运算得:


当参考电压Vref固定为1.8V时,电阻R30为3.6,电流恒定输出0.5mA。
该恒流源电路可以设计出其他电流的恒流源,其基本思路就是:所有的电阻都需要采用高精度电阻,且阻值一致,用输入的参考电压(用专门的参考电压芯片)比上阻值,就是获得的输出电流。
但在实际使用中,为了保护恒流源电路,一般会在输出端串一只二极管和一只电阻,这样做的好处第一是防止外界的干扰会进入恒流源电路,导致恒流源电路的损坏,二是可以防止外界负载短路时,不至于对恒流源电路造成损坏。



4、整流电路中的应用



整流电路

上述电路是一个整流电路,将输入的一定频率的脉冲整流成固定的电平电压,再用此电压控制4-20mA电流的输出电流。该电路功能类似一些DAC功能的接口。


5、热电阻测量电路



热电阻测量电路

上图的电路是典型的热电阻/电偶的测量电路,其测量思路为:将1-10mA的恒流源加于负载,将会在负载上产生一定的电压,将该电压进行有源滤波处理,处理后在进行信号的调整(信号放大或衰减),最后将信号送入ADC接口。
该电路应用时,要注意在输入端施加保护,可以并TVS,但要注意节电容对测量精度的影响,当然,如果在一些低成本场合,上述电路图可简化为下电路。

热电阻测量简化电路


6、电压跟随器


在运放的使用中,电压跟随器是一种常见的应用,该电路的好处是:一是减小负载对信号源的影响;二是提高信号带负载的能力。



电压跟随器

上图是运用运放实现了电阻分压的功能,首先用电阻获得需要输出的电压,然后用运放对该电压进行跟随,提高其输出能力。


7、单电源的应用


在运放的实际使用,我们一般为了保持运放的频率特性,一般都采用双电源供电,但有的时候在实际使用,我们只有单电源的情况,也能实现运放的正常工作。


首先我们运用运放跟随电路,实现一个VCC/2的分压:



分压电路

当然,如果在要求不是很高的场合,我们可以直接电阻分压,获得+VCC/2,但由于电阻分压的特性所在,其动态的响应速度会非常慢,请谨慎使用。


获得+VCC/2后,我们可以用单电源实现信号放大功能,如下图:



单电源的应用

该电路中 R66=R67//R68, 信号的输出增益G=-R67/R68 。


具体应用如下图:运放为单+5V_AD供电,AD芯片的电压是3.3V(基准电压芯片REF3033得到),该3.3V再电阻分压和经过运放跟随后得到1.65V,给到运放的同相输入端



单电源差分输入并放大的应用

附:运放的应用要点

 


声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • 模拟
  • 模电
  • 运放
  • 放大
  • 压力传感器调试常见问题有哪些?

    变送器由测量部分、放大器和反馈部分组成,变送器是基于传感器实现的。因为变送器具备测量部分,所以变送器可属于测量仪器范畴。为增进大家对变送器的认识,本文将对变送器和液位传感器的区别,以及液位变送器的种...

    昨天
  • 2.

    压力变送器是在工业中常用的一种器件,但是并非所有人对压力变送器都较为熟悉。为增进大家对压力变送器的认识,本文将对压力变送器和压力表的区别以及压力变送器的主要注意事项予以介绍。如果你对压力变送器具有兴...

    昨天
  • 三分钟了解4种不同类型的ADC

    ADC也就是模拟数字转换器,对于ADC,我们通常也会称其为A/D转换器。为了增进大家对ADC的认识,本文将对逐次逼近型ADC、积分型ADC、并行比较ADC、压频变换型ADC进行详细阐述,以帮助大家了解这几种不同类型ADC之间的...

    昨天
  • ∑-Δ型ADC和流水线型ADC了解

    ADC的使用,能够帮助我们将模拟信号转化为数字信号。在上篇文章中,小编对4种不同类型的ADC进行了详细阐述。为增进大家对ADC的认识,本文将对∑-Δ型ADC和流水线型ADC予以介绍。如果你对ADC具有兴趣,不妨继续往下阅...

    昨天
  • SAR ADC模拟输入信号类型

    对于ADC,很多朋友都很了解。在小编身边,便存在好几个ADC大佬。如果你还不是一个精通ADC的大佬,可要认真学习了哦。为了增进大家对ADC的认识,本文将对不同SAR ADC模拟输入架构予以介绍。如果你对ADC具有兴趣,不...

    昨天
  • 想学好电路,这些基础基础模块电路一定要看懂!

    下面的五副电路图,你能看懂几个?

    昨天
  • 巩固一下,三极管应用电路

    学习模拟电路时少不了学习三极管,过往老师的谆谆教诲已经忘记,今天再来巩固一下

    昨天
  • 抖动和抖动测试专题介绍

    如果要评选电子工程师近20年来的最耳熟能详的专业词汇,眼图和抖动作为孪生姊妹一定在前10之列。

    06-14
  • 在运放的输出环节,应连接至同相端或反相端?

    为什么该电路中运算放大器的输出接到了同向输入端,而不是一般常看到的反向输入端,今天终于想明白了。因此,本文的内容就是先把这个问题讲清楚。

    06-14
  • 阻抗匹配大揭秘:原理、方法与实用技巧一网打尽

    PCB上传输线的电子模型示意图阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于

    06-14
  • 详解运放七大电路设计应用

    运放的基本分析方法:虚断,虚短。对于不熟悉的运放应用电路,就使用该基本分析方法。

    06-14
下载排行榜
更多
评测报告
更多
EE直播间
更多
广告