多节超级电容的升降压充电方案
mouser 2021-09-22

作者:TI 工程师 Eric Xiong

超级电容由于其充电次数,更好的瞬态性能,更简单的充电管理以及更少的环境污染,在很多应用中越来越受欢迎。多个电容单体(2.7V)串联往往需要buck-boost充电拓扑来实现电源的充电管理。是一种集快速充电、电源路径管理、保护功能于一体的单芯片方案。本文讨论了在实际应用中的一些注意事项。

1. 典型充电电路和充电曲线:

“图1图1 典型应用电路
“图2图2 典型的充电曲线
“图3图3 配置和软件设置

2. 加速充电过程

与锂电池的预充电过程不同,超级电容可以直接快速充电,从而减少充电时间,可以采取如下两种方式来减小芯片自带的预充过程,

● 使用更低的检流电阻Rsr=2mOhm.

默认是10 mOhm,相当于提升5倍的预充电流。

“图图 4 20s 快速充电充满

● 2去使能LDO 模式

为了保证芯片的最小工作电压,在预充过程充,BATFET处于LDO模式下,采用旁路模式也能加快充电速度,但会牺牲一部分系统电压范围。

“”图 5 LDO 使能模式 图6 LDO旁路模式

3. 兼容0.5A小电流USB输入

当输入电源的电流能力有限,而充电电流很高时会有拉低输入电压的风险,需要动态的配置充电电流,防止系统电压过低导致的系统崩溃。的DPM模式能灵活地设置输入功率限制,动态地的分配实时的充电电流,保证输入电压恒定。

“” 图 7 无DPM模式 图8 DPM模式

4. 被动均衡功能

为了防止单体过充或者欠充,需要加入主动或者被动均衡,在保证功耗的基础上,被动均衡的电路简单,成本更低。

“图图 9 电阻被动均衡

5. 硬件过充保护

当软件崩溃或者程序错误设置时,需要硬件的保护来防止电压过冲而引起的危险。使用内部比较器并结合芯片本身的HIZ模式可以强制保护充电电压低于设置的安全门限值。

“图图 10 HIZ 硬件过压保护

6. 综述

综上,可以作为多节的超级电容的升降压充电方案,自带power path 功能和DPM功能,软件配置灵活,硬件保护功能齐全。 

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • 电源
  • DC
  • AC
  • 稳压
  • 三相PWM整流拓扑(仿真代码)

    OBC用三相PWM整流拓扑主要原因是可以双向变换,后面DCDC再用三相CLLC就能完美配合。

    08-09
  • 开关电源常见的基本拓扑结构

    1、基本名词     常见的基本拓扑结构     ■Buck降压     ■Boost升压     ■Buck-Boost降压-升压     ■Flyback反激     ■Forward正激     ■Two-Transistor Forward双晶体管正激     ■Push-Pull推挽     ■Half Bridge半桥     ■Full Bridge全桥     ■S

    05-10
  • LLC开关电源计算过程推导

     免费申请开发板  推荐阅读: 点击下方『面包板社区』卡片关注我们, 每天学点电子技术干货 ▲ 点击关注,后台回复"关键词",领取300 G学习资料包!  内容合作 | 视频、课程合作 | 开发板合作| 转载开白  请联系小助手微信:15889572951(微信同号) 点击阅读

    05-06
  • 移相全桥电源12种工作模态

    在早期的大功率电源(输出功率大于1KW)应用中,硬开关全桥(Full-Bridge)拓扑是应用最为广泛的一种,其特点是开关频率固定,开关管承受的电压与电流应力小,便于控制,特别是适合于低压大电流,以及输出电压与电流变化较大的场合。但受制于开关器件的损耗,无

    05-07
  • 大牛总结:六种DC/DC变换电路分析比较

    基本原理 直流-直流降压变换器(BUCK变换器) 直流-直流升压变换器(BOOST变换器) 直流降压升压变换器(BUCK-BOOST变换器) 直流升压降压变换器(CUK变换器) 两象限/四象限直流-直流变换器 单端正激变换器 单端反激变换器 *本文系网络转载,版权归原作者所有,如有

    04-29
  • 肖特基二极管有什么特别之处?

    注| 文末留言有福利 提到低功耗、大电流、超高速半导体器件,很多工程师同学肯定能首先想到肖特基二极管(SBD)。 但是你真的会用肖特基二极管吗?和其他的二极管比起来,肖特基二极管又有什么特别之处呢?下面一起来 划重点 吧! 0 1 肖特基二极管的关键参数

    04-27
  • 分析实例:了解DC/DC变换器一些常见的问题

    先介绍几个应用实例从这些应用实例中,了解如何分析DC/DC变换器设计中的问题及解决方法,从常见的buck电路,在平时设计和调试过程中,从DCDC变换器性能,功能设置,控制环设计,板子布局和测试技巧,通过这些分析实例能了解DCDC电路中在试机阶段快速解决掉一

    04-26
  • 图解BUCK电路及PCB布局

    Buck架构: 当开关闭合的时候: 当开关断开的时候: 根据伏秒平衡定理可得: (Vin-Vout)*DT=Vout(1-D)T===>Vin/Vout=D<1 在实际DCDC应用中: 当Q1闭合的时候,在图1-a中,红线示出了当开关元件Q1导通时转换器中的主电流流动。CBYPASS是高频的去耦电容器,CI

    04-25
  • 开关电源公式与对应电路

    1 Buck 变换器的功率器件设计公式 (1):Buck 变换器的电路图: (2):Buck 变换器的主要稳态规格: (3):功率器件的稳态应力: -- 有源开关 S: -- 无源开关 D: 上述公式是稳态工作时,功率器件上的电压、电流应力。选择功率器件时,其电压耐量可放一个

    04-23
  • 为什么PWM驱动芯片用图腾柱?

    推挽电路的应用非常广泛,比如单片机的推挽模式输出,PWM控制器输出,桥式驱动电路等。推挽的英文单词:Push-Pull,顾名思义就是推-拉的意思。所以推挽电路又叫推拉式电路。 图1:锯木头 推挽电路有很多种,根据用法的不同有所差异,但其本质都是功率放大,增

    04-23
  • 开关电源的输入滤波器(共模、差模)

    开关电源的输入滤波器 开关电源的输入滤波器是针对共模噪声和差模噪声,分别采用适合不同噪声特性的滤波器。 差模滤波器 共模滤波器采用电容器、电感、铁氧体磁珠和电阻等。图例中是使用了LC的π型滤波器。各部件对噪声具有如下作用: 电容器:将噪声电流旁路

    04-21
  • 入门级电源工程师常遇到的问题

    先上图 一些入门级的电源工程师常遇到这样一个问题,在电路图中的Vcc接芯片的地方加入了一个12V左右稳压管。目的是为了保证芯片的电压上限,意图很明确,稳压管能够保护芯片不会因为电压过高问题而烧毁。看上去没啥毛病,但实际上很危险。 我们一起来初步分析

    04-19
下载排行榜
更多
EE直播间
更多
广告
X
广告