PMIC电源调试中最为棘手的问题
0 2023-02-09

电源在系统中有着举足轻重的地位,本篇文章介绍了PMIC电源调试中最为棘手的问题,以及相应的解决办法。该产品具有故障安全输出机制,支持多输出轨、输出电压可配置及工作频率和上电时序可设置、看门狗监控等强大功能。

这个问题太棘手

电源是系统的重要组成部分,电源的调试又是工程师们最头痛的问题之一,读者中有没有遇到过棘手的问题呢?

最近,小编在调试某平台时,遇到一个很诡异的现象:PMIC输出几秒,突然又断开几秒,紧接着又开始输出,如此循环,并且很有规律性。

这个器件够强大

小编在分析问题之前,先展示一下这颗非常具有潜力的PMIC-FS8530器件。

PMIC最高支持ASIL-D的安全等级,其具有故障安全输出机制,支持多输出轨、输出电压可配置及工作频率和上电时序可设置,并且支持看门狗监控等体现安全的功能。

•   三路低压Buck,两路线性稳压器(LDO);

•   通过SPI或I2C接口进行配置和诊断执行;

•   通过OTP编程进行配置;

•   VPRE同步降压控制器,带有外部MOSFET,可配置的输出电压,开关频率,最高10A峰值的电流能力;

•   低压集成同步BUCK1/2转换器。可配置的输出电压,电流能力高达3.6A峰值;BUCK1/2的多相功能可在单轨上将电流能力扩展至7.2A峰值;

•   具有独立监控电路的ASIL-D,用于MCU监控的专用接口,具有watchdog,复位和中断,内置自检,故障安全输出功能。

这个问题好解决

回归正题,继续文章开始的问题。开始排查了PMIC的Reset,Wake等信号,都没发现异常,鉴于输出波形的规律性,经过小编的苦苦研究,问题终于找到答案。

原因出现在这里:因为OTP时启用了Challenger watchdog监视功能。

Challenger watchdog基于MCU的question/answer流程。在FS8530中通过LFSR(Linear Feedback Shift Register)实现生成16位伪随机字。

MCU可以在INIT_FS阶段发送LFSR的seed或使用FS85生成的LFSR,并执行预定义的计算。在watchdog OPEN窗口期间通过SPI / I2C发送,并由FS8530验证结果。

•   当结果正确时,将重新启动watchdog程序窗口并生成新的LFSR;

•   当结果错误时,watchdog错误计数器递增,watchdog窗口重新启动并且LFSR值不会改变。

在初始化阶段(INIT_FS)期间,MCU发送LFSR的seed,或使用由WD_SEED寄存器中提供的FS8530(0x5AB2)生成的默认LFSR值。使用此LFSR,MCU根据以下公式执行简单计算,并将结果发送到WD_ANSWER寄存器。

watchdog错误策略适用于Challenger watchdog和Simple watchdog。watchdog错误计数器在设备中实现,用来过滤不正确的watchdog刷新。

每次发生watchdog故障时,器件将此计数器递增2;每次正确刷新watchdog时,watchdog错误计数器将递减1。此原则可确保循环“OK / NOK”行为收敛到故障检测。为了实现应用程序的灵活性,此计数器的最大值可在INIT_FS阶段使用WD_ERR_LIMIT [1:0]位进行配置。

根据以上原因分析,解决该问题有两个方法:

使用Debug模式,此时,看门狗窗口完全打开,故障安全状态机的深度故障保护请求(DFS = 1)被屏蔽,RSTB引脚的8s定时器监控被禁用,不需要看门狗刷新(仅限于调试时使用);

MCU/CPU通过I2C/SPI在INIT_FS阶段发送LFSR的seed或使用FS8530生成的LFSR,并执行预定义的计算,避免watchdog错误次数达到预定值而复位,导致断断续续输出。

结束语

在清晰了PMIC工作的机制后,解决问题就水到渠成了。在往常,看门狗一般应用于主控MCU的安全性监控,但随着汽车设计安全性的需求越来越高,节点系统的各个部分将拥有越来越多的安全机制...... 

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • 电源
  • DC
  • AC
  • 稳压
  • LC滤波器简单设计方法及原理介绍

    LC滤波器概述  LC滤波器也称为无源滤波器,是传统的谐波补偿装置。LC滤波器之所以称为无源滤波器,顾名思义

    9小时前
  • 反激开关电源设计思路解析

    一、整体概括下图是一个反激式开关电源的原理图。输入电压范围在AC100V~144V,输出dc12v的电压。开

    9小时前
  • 3种常用恒流电路设计方案

    三极管恒流电路三极管的恒流电路,主要是利用Q2三极管的基级导通电压为0.6~0.7V这个特性;当Q2三极管导

    9小时前
  • BLDC电机控制算法总结

    BLDC电机控制算法 无刷电机属于自换流型(自我方向转换),因此控制起来更加复杂。 BLDC电机控制要求了解电机进行整流转向的转子位置和机制。对于闭环速度控制,有两个附加要求,即对于转子速度/或电机电流以及PWM信号进行测量,以控制电机速度功率。 BLDC电

    9小时前
  • 电感型升压DC/DC转换器

    BOOST升压电路中:电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转

    9小时前
  • 采用TL494大功率高效率降压转换器电路

    降压转换器(降压转换器)是一种DC-DC 开关转换器,可在保持恒定功率平衡的同时降低电压。降压转换器的主要特

    9小时前
  • 有桥交错PFC拓扑(拓扑特点总结)

    有桥交错PFC拓扑有桥交错PFC之错相通过调节频率使PFC电感电流在每个高频周期过零,以实现PFC二极管的零

    9小时前
  • 电源模块为何需要隔离

    电源是电子系统的心脏,工业应用中,为系统前级或接口供电的电源一般都要求有高的抗干扰性能,各种隔离型的模块电源模块应运而生。你或许知道隔离电源的设计方案,但你真的

    12小时前
  • 电源PCB设计的十个要点

    电容模型电容并联高频特性电感模型电感特性镜象面概念高频交流电流环路过孔(VIA)的例子PCB板层分割降压式(BUCK)电源:功率部分电流和电压波形降压式电源排版

    昨天
  • nginx实现高性能低消耗的原理

    Nginx 是一个轻量级的HTTP 服务程序,相比其他服务器程序如Apache,Nginx占用内存少,稳定性

    昨天
  • 阻容降压电路入门介绍

    一、阻容降压电路演示电路图,阻容元件如图1中红框所示。电路图基本原理:交流电经过阻容降压电路限流后进行全波整

    昨天
  • 硬件热设计详解

    热设计的目的:\x0d\x0a采用适当可靠的方法控制产品内部所有电子元器件的温度,使其所处的工作环境条件下不超过稳定运行要求的最高温度,以保证产品正常运行的安全性,长期运行的可靠性。

    昨天
下载排行榜
更多
广告