实例:LLC变压器的绕组结构的思考
开关电源仿真与实用设计 2022-09-26

前言:

  最近发几篇很早以前写了发布在QQ空间的文章,本文主要是对一个LLC变压器的绕组和结构进行思考,有图为证:


  当选择EI3027的磁芯作为12V70A的变压器时,我就很想知道这款变压器的结构和绕线。所以我砸开了一款,通过几张照片来对其一探究竟:

 1、首先是副边绕组的设计,副边绕组采用0.8mm厚度,宽度5mm,其横截面积是4mm^2的成型铜箔。在暂时不考虑集肤效应,对副边绕组进行直流电阻测试,其直流DCR = 0.62m ohm 。绕组采用一根铜条一体成型,分别是两个绕组的引出线和中间抽头共用脚,可见下图所示。

    

(变压器副边绕组结构)

2、通过拆解可以看到副边和原边绕组的结构,原边绕组绕在骨架的最里层。然后是副边绕组的铜条。对于绕组结构来说,这应该算不上是“三明治绕法”。只能算是普通的绕法。但由于原边和副边都只有一层,所以从等效的角度来看,绕组的层数也只能算一层,即一层原边一层副边。可见下图  。

           

变压器结构

3,原边是采用0.7mm的三层绝缘线,副边是0.8mm厚度的铜带。现在从趋肤深度和临近效应的角度考虑一下这个结构的交流耗损。原副边的等效层数都是一层,所以当利用DOWLL曲线分析就特别方便,因为LLC的原边电流波形就是一个正弦电流,完全符合Dowll基于正弦电流的分析依据。根据150KHZ计算出来的集肤深度是0.228mm,副边绕组等效的厚度是0.62mm。通过计算,实际选择线径是肤深度的2.72倍。根据DOWLL曲线可以得知,RAC/RDC = 2.8倍。实际测量原边绕组的直流电阻为:40 ohm,所以得到交流阻抗为112m ohm。然后根据原边电流有效值,计算得到原边绕组的耗损为:3.6W。 


(应用于正弦波的Dowll曲线

4,副边绕组的耗损:副边采用0.8mm厚度的铜箔,其等效厚度就是0.8mm。计算出来和肤深度的比例为3.5。 但是副边绕组的电流波形,不是完整的的正弦波形。也就是不能完全按Dowll曲线来照搬,需要做一点改变。在《应用于电力电子技术的变压器和电感器 -- 理论、设计和应用》一书中给出了这种电流波形的计算和方法。可参见下图,第二行。

( 应用于电力电子技术的变压器和电感器 -- 理论、设计和应用 第137页) 
  按书里的对于非标准正弦电流波形的计算方法,要对其进行波形进行傅里叶分解。因为任意形状的波形都可以用傅里叶分解,得到基波和各种高次的正弦余弦组合起来。然后还考虑各次谐波的引起耗损,然后在把这些累加起来得到总耗损。经过各种变换,其详细推导过程见该书第134页,作者给出了一个三维的曲线图,用来快速选型。其中P是绕组层数,D 是绕组实际厚度和趋肤深度之比, V 是等效阻抗Rrff/Rdc。然后就可以根据你的变压器的实际层数,实际绕组直流阻抗,开关频率,来得到等效交流阻抗。

  根据实际参数, 得到等效交流阻抗是直流的2.045倍。因此可以计算得到副边等效的阻抗为 0.62*2.045 = 1.2679m ohm 。根据副边电流有效值为52A,计算可以得到耗损为3.5W损耗。
  然后根据匝数算磁芯损耗,就不多说了。这里我主要参考了《应用于电力电子技术的变压器和电感器 -- 理论、设计和应用》这本书中关于Dowll曲线应用。

小结:变压器的绕组损耗计算一直是个难点,特别是开关电源中电流波形根本不是正弦波,如果按Dowll曲线分析,那肯定是会有较大的误差的。但这本书中提到了这个算法,我也不敢在应用中保证绝对正确,但是能为我们在迷茫中找到一条道路。变压器的设计,总是要经过的实际测试,如果能把实际测试和理论结合起来那就太妙了。
 

  在实际中这种也用的挺多:


Matlab代码:

%problem 6.7 Plot of Reff/Rdelta versus Delta for various numbers of layers

 

close all

clear all

clc

 

Io = 1;

 D = 0.5;

 Idc = Io*2*D / pi;

 Irms = Io*sqrt(D/2);


for p = [1:10]

u=1;

    for delta = [0.01:0.04:3.5];

        sum = 0;

        for n = [1:13]

            deltan = delta*sqrt(n);

            kpn = deltan*((sinh(2*deltan)+sin(2*deltan))/(cosh(2*deltan)-cos(2*deltan))+2*(p^2-1)/3*(sinh(deltan)-sin(deltan))/(cosh(deltan)+cos(deltan)));

            In = Io/sqrt(2)*(sinc(n*D/2))^2;

            y = kpn*In^2;

            sum = sum+y;

        end

        R = (Idc^2+sum)/(delta*Irms^2);

        V(p,u) = R;

        De(u)= delta;

        u=u+1;       

    end   

end

 

 

mesh(De,1:10,V)

title('Figure 6.11 Plot of Reff/Rdelta versus Delta for various numbers of layers')

xlabel('D')

ylabel('p')

zlabel('V')

axis([0 3.5 1 10 0 100])

grid off

hold on

 

for p = [0.1:0.1:10]

u=1;

    for delta = [0.01:0.01:3.5];

        sum = 0;

        for n = [1:13]

            deltan = delta*sqrt(n);

            kpn = deltan*((sinh(2*deltan)+sin(2*deltan))/(cosh(2*deltan)-cos(2*deltan))+2*(p^2-1)/3*(sinh(deltan)-sin(deltan))/(cosh(deltan)+cos(deltan)));

            In = Io/sqrt(2)*(sinc(n*D/2))^2;

            y = kpn*In^2;

            sum = sum+y;

        end

        R = (Idc^2+sum)/(delta*Irms^2);

        V(round(p*10),u) = R;

        De(u)= delta;

        u=u+1;  

    end   

end

 

 

for p=0.1:0.1:10

    [krmin,delopt]=min(V(round(p*10),:));

    A(round(p*10))=delopt/100;

    B(round(p*10))=p;

    C(round(p*10))=krmin+0.1;

end

 

plot3(A,B,C,'k','LineWidth',2)

axis([0 3.5 0 10 0 100])

hold on 




参考文献:
 1、应用于电力电子技术的变压器和电感器 -- 理论、设计和应用
 2、精通开关电源设计 第二版 




本文源自微信公众号:开关电源仿真与实用设计,不代表用户或本站观点,如有侵权,请联系nick.zong@aspencore.com 删除!

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • 电源
  • DC
  • AC
  • 稳压
下载排行榜
更多
评测报告
更多
广告