混合电压供电的移动设计两个细节
Ofweek 2021-10-09

  本文将探讨在混合电压供电的移动设计中,混合电压电平如何提高ICC电源电流及逻辑门如何降低功耗。当前的移动设计在努力在高耗能(power-rich)的功能性和更长电池寿命的需求之间取得平衡。


  低ICCT技术有利于节能

 

  目前,大多数都备有多个电源轨,但在输进高电平(VIH)低于电源电压(VCC)时,仍可能产生不定功耗。当输进电压为电源轨电平(VIL = Gnd 或 VIH = VCC)时,CMOS一般具有极低的静态ICC和泄漏电流,故是移动应用中逻辑器件的首选技术。不过,若VIH < VCC,会发生这种情况:输进级的PMOS和NMOS晶体管可能均在不同级“导通”,此时传导电流,在这个状态期间,静态电流ICC增加,存在一条从VCC到Gnd的路径。这个增加的电流被称为ICCT电流,亦是输进电压逼近阈值时的电源电流。图1描述了这种情况。

      

  图1:逻辑门和输入电压条件。

  注释:*输进电压即是电源电压Vcc时为使用CMOS门电路的理想状态;这时ICC电流极低。

  *在混合电压情况下,若Vin < VCC,ICCT电流出现,功耗也随之产生。

 

  一般在CMOS门电路的设计中,输入电压阈值或输入切换点为VCC/2;不过,飞兆半导体的低ICCT门电路采用专有的输入电压设计,可降低输入阈值电压,增大输入电压范围,同时不影响有效逻辑低电平VIL。如前所述,当输入电压为0V或VCC时,CMOS门电路的耗电量极低,而产品数据手册通常会注明该条件下的ICC。因此,系统设计人员在VIH值小于VCC时看到ICC电流增大可能颇为惊讶。下面的图2显示了一个重新设计的输入结构的优点。图2所示的VIN-ICC 曲线图比较了一个标准CMOS输入器件和一个低ICCT输入器件。静态功率由基本DC功率公式决定:P=ICC×VCC。在本例中,输入VIH为2.5V,标准CMOS门电路输入的功耗等于3.0mW (3.6V ×0.83mA) ,而低ICCT门电路的功耗只有0.003mW (3.6V×0.99uA);也就是说,利用低ICCT器件,静态功耗降低了100%。

 

  

  图2:ICC-VIN输入曲线 (Vcc=3.6V, VIN=“2”.5V)。

 

        ICC电流的增大十分重要,因为它会大幅度增加器件的静态功耗。飞兆半导体的专有低ICCT输入结构可在ICCT电流出现期间限制其范围,如图2所示。

 

  

  表1:不同VIH条件下的节能潜力。

 

  

  表2:飞兆半导体的NC7SVL低ICCT门电路。

 

        表1比较了不同VCC/VIN条件下的ICCT电源电流级。从表中可看出,飞兆半导体的低ICCT门电路具有很大的节能潜力。在混合电压系统中,利用低ICCT门电路,与逻辑门电路相关的功耗可降至微不足道。

  表2列出了低ICCT门电路供货情况。根据需要可以提供额外的功能。当现有应用因前面讨论的输入条件而出现功耗过大时,用户可利用标准引脚输出,直接简便地进行替换。

   

总结 

 

       延长电池寿命的要诀是降低各级的功率。随着便携设备整合更多的功能,功耗问题越来越令人担忧。飞兆半导体的NC7SVL低ICCT TinyLogic产品为解决这些难题提供了一个具成本效益的解决方案。此外,飞兆半导体先进的小尺寸MicroPak封装技术,以及新推出的更小的1.0x1.0mm MicroPak 2封装技术,可显著降低线路板空间要求。

  对于功率预算十分紧张的便携应用产品来说,耗电量的增加是不能接受的。NC7SVL低ICCT门电路能够帮助系统设计人员在将功率保持在预算之内,并延长电池寿命。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • 硬件
  • 原理图
  • 信号完整性
  • EMI
  • 工程师需了解的芯片datasheet

    注 | 文末留言有神器 本文主要介绍芯片datasheet的查找、使用方法以及重要性,不管是设计硬件电路还是编程,datasheet都是重要的资料, 芯片的使用方法都在datasheet里,这也是最权威的资料! Datasheet(数据手册)的快速阅读能力是每个工程师都应该具备的基本

    05-11
  • 三级管的无刷电机滤波应用

    如图1是无刷电机霍尔信号的滤波电路,为了保证波形质量,简单的阻容滤波并不能完全解决实际复杂的工作环境所带来的波形异常,量产的无刷驱动模块也有该电路。 为了保证滤波质量,在RC滤波后面加一个NPN三极管,利用三极管自身的响应速度达到高质量滤波目的。

    05-11
  • 为什么烧毁的总是相同的电容?

    我曾在一家光通信公司担任设计工程师,该公司生产的1000台设备安装在世界各地。现场的模块很多,送回公司返修的也很多,我的工作便是搞清这些模块出了什么故障。其中一次故障查找经历给我上了精彩的一课,我至今记忆犹新。 客户寄回来一个模块,其故障原因很

    05-11
  • 理解PID,探究微分、积分电路的本质

    很多朋友觉得PID是遥不可及,很神秘,很高大上的一种控制,对其控制原理也很模糊,只知晓概念性的层面,知其然不知其所以然,那么本期从另类视角来探究微分、积分电路的本质,意在帮助理解PID的控制原理(PID:P表示比例控制;I表示积分控制;D表示微分控制)

    05-10
  • 555定时器电路图汇总

    3*3*3光立方 警报器 闪光器 鸣笛警报器 闪烁电路 闪烁电路 激光射线 闩 电子骰子 LED调光器 555放大器 光检测器 机器枪 金属探测器 电机脉宽调制 LED闪光电路 音乐盒 玩具器官 警灯 另一个警灯 驱动双色LED 模型铁路时间 雨水警报 反应计时器 继电器 继电器

    05-07
  • 电解电容的计算与选择

    输入侧的电解电容计算 我们一般按照在最低输入电压下,最大输出的情况下,要求电解电容上的纹波电压低于多少个百分点来计算。当然,如果有保持时间的要求,那么需要按照保持时间的要求重新计算,二者之中,取大的值。 假如在最低输入电压下,电源的输入功率为

    05-07
  • 一个按键开关机的硬件软件设计

    要设计一个产品,只有一个按键,长按开机,再长按就关机(关机电路上的电源需要断开)。那么硬件需要怎么设计呢,软件又可以怎么做呢? 硬件电路设计如下。 硬件PCB设计如下。 硬件的工作原理是这样的,长按按键SW1时,MOS管Q1导通,电源VBAT+给系统供电,单片

    05-06
  • 电子硬件英文缩写术语解析

    常用控制接口 EN:Enable,使能。使芯片能够工作。要用的时候,就打开EN脚,不用的时候就关闭。有些芯片是高使能,有些是低使能,要看规格书才知道。 CS:Chip Select,片选。芯片的选择。通常用于发数据的时候选择哪个芯片接收。例如一根SPI总线可以挂载多个

    05-06
  • 二极管限幅电路的具体分析细节

    二极管最基本的工作状态是导通和截止两种,利用这一特性可以构成限幅电路。所谓限幅电路,就是指限制电路中某一点的信号幅度大小,当信号幅度大到一定程度时,不让信号的幅度再增大;当信号的幅度没有达到限制的幅度时,限幅电路不工作。具有这种功能的电路称

    05-07
  • 60%的EMI问题可以用这个来解决

    随着信号上升沿时间的减小,信号频率的提高,电子产品的EMI问题,也来越受到电子工程师的重视。高速pcb设计的成功,对EMI的贡献越来越受到重视,几乎60%的EMI问题可以通过高速PCB来控制解决。 1 高速信号走线屏蔽规则 如上图所示:在高速的PCB设计中,时钟等

    04-30
  • 几种常用的传感器数据处理

    在传感器使用中,我们常常需要对传感器数据进行各种整理,让应用获得更好的效果,以下介绍几种常用的简单处理方法: 1.加权平滑:平滑和均衡传感器数据,减小偶然数据突变的影响; 2.抽取突变:去除静态和缓慢变化的数据背景,强调瞬间变化; 3.简单移动平均线

    04-30
  • 工程师硬件面试的几个问题

    今天给大家分享一些硬件常见面试题。 问1 晶体管基本放大电路有共射、共集、共基三种接法,请简述这三种基本放大电路的特点。 共射:共射放大电路具有放大电流和电压的作用,输入电阻大小居中,输出电阻较大,频带较窄,适用于一般放大。 共集:共集放大电路

    04-29
下载排行榜
更多
EE直播间
更多
广告
X
广告