BGA封装结构中芯片与基板的互连方式主要有两种:引线键合和倒装焊。BGA的I/O数主要集中在100~1000。成本、性能和可加工能力是选择使用何种方式时主要考虑因素。采用引线键合的BGA的I/O数常为50~540,采用倒装焊方式的I/O数常>540。另外,选用哪一种互连方式还取决于所使用封装体基片材料的物理特性和器件的应用条件。PBGA的互连常用引线键合方式,CBGA常用倒装焊方式,TBGA两种互连方式都有使用。当I/O数<600时,引线键合的成本低于倒装焊。但是,倒装焊方式更适宜大批量生产,而如果圆片的成品率得到提高,那么就有利于降低每个器件的成本。并且倒装焊更能缩小封装体的体积。
引线键合引线键合方式历史悠久,具有雄厚的技术基础,它的加工灵活性、材料/基片成本占有主要的优势。其缺点是设备的焊接精度已经达到极限。引线键合是单元化操作。每一根键合线都是单独完成的。键合过程是先将安装在基片或热沉上的IC传送到键合机上,机器的图像识别系统识别出芯片,计算和校正每一个键合点的位置,然后根据键合图用金线来键合芯片和基片上的焊盘,以实现芯片与基片的互连。它是单点、单元化操作。采用引线键合技术必须满足以下条件:①精密距焊接技术在100~500的高I/O数的引线键合中,IC芯片的焊盘节距非常小,其中心距通常约为70~90μm,有的更小。键合机最小已能实现35 μm的中心距焊接。②低弧度、长弧线技术在BGA的键合中,受控弧线长度通常为3~8mm,其最大变化量约为2.5mm。弧线高度约为100~200μm,弧线高度的变化量<7μm,芯片与基片上外引线脚的高度差约为0.4~0.56mm,IC芯片厚度约为0.2~0.35mm。在高密度互连中,弧线弯曲、蹋丝、偏移是不允许的。另外,在基片上的引线焊盘外围通常有两条环状电源/地线,键合时要防止金线与其短路,其最小间隙必须>25 Llm,这就要求键合引线必须具有高的线性度和良好的弧形。③键合强度由于芯片和基片上的焊盘面积都比较小,所以精密距焊接时使用的劈刀是瓶颈型劈刀,头部直径也较小,而小直径的劈刀头部和窄引线脚将导致基片上焊点的横截面积较小,从而会影响键合强度。④低温处理塑封BGA的基片材料通常是由具有低玻璃化温度(Tg约为175℃)、高的热膨胀系数(CTE约为13ppm/℃)的聚合物树脂制成的,因此在封装过程中的芯片装片固化、焊线、模塑等都必须在较低的温度下进行。而当在低温下进行键合时,对键合强度和可靠性会产生不良影响。要解决这一问题就必须要求键合机的超声波发生器具有较高(100kHz以上)的超声频率。因此,在制造工艺上对键合机、键合工具、键合丝都提出了挑战。对键合机的要求:具有良好的成球控制能力,具有100kHz以上的超声频率,能在低温下实现精密距焊接,能精确地控制键合引线弧形,键合质量具有良好的重复性等。新一代的键合机都能满足上述要求。对劈刀的要求:必须具有良好的几何形状,能适应高频键合,以提供足够高的键合强度;材质好,使用寿命长。对键合丝的要求:必须具有好的中、低弧度长弧线性能,良好的韧性及抗拉强度。
倒装焊倒装焊技术的应用急剧增长,它与引线键合技术相比,有3个特点:●倒装焊技术克服了引线键合焊盘中心距极限的问题。●在芯片的电源/地线分布设计上给电子设计师提供了更多的便利。●为高频率、大功率器件提供更完善的信号。倒装焊具有焊点牢固、信号传输路径短、电源/地分布、I/O密度高、封装体尺寸小、可靠性高等优点,其缺点是由于凸点的制备是在前工序完成的,因而成本较高。倒装焊的凸点是在圆片上形成的,制成后再进行圆片切割,合格的芯片被吸附、浸入助焊剂中,然后放置在基片上(在芯片的移植和处理过程中,助焊剂必须有足够的粘度来粘住芯片),接着将焊料球回流以实现芯片与基片的互连。在整个加工过程中,工艺处理的是以圆片、芯片和基片方式进行的,它不是单点操作,因而处理效率较高。采用倒装焊方式需要考虑的几个相关问题。①基板技术对倒装焊而言,有许多基板可供选择,选择的关键因素在于材料的热膨胀系数(CTE)、介电常数、介质损耗、电阻率和导热率等。在基板与芯片(一级互连)之间或基板与PCB板(二级互连)之间的TCE失配是造成产品失效的主要原因。CTE失配产生的剪切应力将引起焊接点失效。通常封装体的信号的完整性与基片的绝缘电阻、介电常数、介质损耗有直接的关系。介电常数、介质损耗与工作频率关系极大,特别是在频率>1GHz时。当选择基板时应考虑上述因素。对倒装焊而言,使用有机物基板非常流行,它是以高密度多层布线和微通孔基板技术为基础制造的,其特点是有着低的互连电阻和低的介电常数。它的局限性在于:①在芯片与基板之间高的CTE差会产生大的热失配;②在可靠性环境试验中,与同类型的陶瓷封装器件相比,可靠性较差,其主要原因是水汽的吸附。现有的CBGA、CCGA封装采用的基板为氧化铝陶瓷基板,其局限性在于它的热膨胀系数与PCB板或卡的热膨胀系数相差较大,而热失配容易引起焊点疲劳。它的高介电常数、电阻率也不适用于高速、高频器件。现已经开发出一种新的陶瓷基板--HITCE陶瓷基板,它有3个主要特点,12.2ppm/℃的CTE,低的介电常数5.4,低阻的铜互连系统。它综合了氧化铝陶瓷基板和有机物基板的最佳特性,其封装产品的可靠性和电性能得以提高。表3为陶瓷基板和有机物基板材料特性的比较。② 凸点技术也许倒装焊技术得以流行是由于有各种各样的凸点技术服务。常用的凸点材料为金凸点,95Pb5Sn、90Pbl0Sn焊料球(回流焊温度约350℃),有的也采用63Pb37Sn焊料球(回流焊温度约220℃焊料凸点技术的关键在于当节距缩小时,必须保持凸点尺寸的稳定性。焊料凸点尺寸的一致性及其共面性对倒装焊的合格率有极大的影响。③底部填充在绝大多数的倒装焊产品中都采用了底部填充剂,其作用是缓解芯片和基板之间由CTE差所引起的剪切应力。