RC电路在模拟电路、数字电路中得到了广泛的应用。
RC的连接方式
1) RC 串联电路
电路的特点:由于有电容存在不能流过直流电流。
电阻和电容都对电流存在阻碍作用,其总阻抗由电阻和容抗确定,总阻抗随频率变化而变化。根据电容的容抗
对于直流,频率为0,电容的容抗为无穷大,此时电路是开路的。
RC 串联有一个转折频率:
当频率小于转折频率
当频率大于转折频率
当频率等于转折频率
即
2) RC 并联电路
它和 RC 串联电路有着同样的转折频率:
当频率小于转折频率
当频率大于转折频率
RC电路的常见应用
1) RC微分电路
如图1所示,电阻R和电容C串联后接入输入信号
RC微分电路
当RC 数值与输入方波宽度
在R两端(输出端)得到正、负相间的尖脉冲,而且发生在方波的上升沿和下降沿,如图所示,
电路R两端的尖脉冲
t=t1时,
随后,电容C的电压按指数规律快速充电上升,输出电压随之按指数规律下降,找元件现货上唯样商啊城,经过大约3个时间常数,即3τ(τ=R × C)之后,电容被充电至输入电压,即电容两端的电压
t=t2时,
只要脉冲宽度
由于输出波形
如果将按傅里叶级展开,进行微分运算的结果,也将是VO的表达式。
该电路主要用于对复杂波形的分离和分频器,如从电视信号的复合同步脉冲分离出行同步脉冲和时钟的倍频应用。
2) RC耦合电路
图1中,如果电路时间常数τ远大于输入信号的脉宽
,微分电路将变成耦合电路,即在输出端得到和输入端一样的波形,如图所示,
RC耦合电路波形
(1) 在t=t1时,第一个方波到来,VI由0→Vm,因电容电压不能突变(VC=0),VO=VR=VI=Vm。
(2) t1<t<t2时,因τ>>tW,电容C缓慢充电,VC缓慢上升为左正右负,VO=VR=VI-VC,VO缓慢下降。
(3) t=t2时,VO由Vm→0,相当于输入端被短路,此时,VC已充有左正右负电
,经电阻R非常缓慢地放电。
(4) t=t3时,因电容还来不及放完电,积累了一定电荷,第二个方波到来,电阻上的电压就不是Vm,而是VR=Vm-VC(VC≠0),
这样第二个输出方波比第一个输出方波略微往下平移,第三个输出方波比第二个输出方波又略微往下平移,…,最后,当输出波形的正半周“面积”与负半周“面积”相等时,就达到了稳定状态。
也就是电容在一个周期内充得的电荷与放掉的电荷相等时,输出波形就稳定不再平移,电容上的平均电压等于输入信号中电压的直流分量(利用C的隔直作用),把输入信号往下平移这个直流分量,便得到输出波形,起到传送输入信号的交流成分,因此是一个耦合电路。
以上的微分电路与耦合电路,在电路形式上是一样的,关键是tW与τ的关系, 下面比较一下τ与方波周期T不同时(对于占空比为50%的方波信号,t W =T/2)的结果,如下图所示。
在这三种情形中,由于电容C的隔直作用,输出波形都是一个周期内正、负“面积”相等,即其平均值为0,不再含有直流成份。
1) 当τ>>T时,电容C的充放电非常缓慢,其输出波形近似理想方波,是理想耦合电路。
2) 当τ=T时,电容C有一定的充放电,其输出波形的平顶部分有一定的下降或上升,不是理想方波。
3) 当τ<<T时,电容C在极短时间内(tW)已充放电完毕,因而输出波形为上下尖脉冲,是微分电路。
时间常数τ与信号周期T的关系