本帖最后由 KA_IX 于 2023-2-14 14:38 编辑

多年来,工业、医疗和其他隔离系统的设计人员实现安全隔离的手段有限,唯一合理的选择是光耦合器。如今,数字隔离器在性能、尺寸、成本、效率和集成度方面均有优势。了解数字隔离器三个关键要素的特点及其相互关系,对于正确选择数字隔离器十分重要。这三个要素是:绝缘材料、结构和数据传输方法。
设计人员之所以引入隔离,是为了满足安全法规或者降低接地环路的噪声等。电流隔离确保数据传输不是通过电气连接或泄漏路径,从而避免安全风险。然而,隔离会带来延迟、功耗、成本和尺寸等方面的限制。数字隔离器的目标是在尽可能减小不利影响的同时满足安全要求。
传统隔离器——光耦合器则会带来非常大的不利影响, 功耗极高,而且数据速率低于 1 Mbps。虽然存在更高效率和更高速度的光耦合器,但其成本也更高。数字隔离器问世于 10 多年前,目的是降低光耦合器相关的不利影响。数字隔离器采用基于 CMOS 的电路,能够显著节省成本和功耗,同时大大提高数据速率。数字隔离器由上述要素界定。绝缘材料决定其固有的隔离能力,所选材料必须符合安全标准。结构和数据传输方法的选择应以克服上述不利影响为目的。所有三个要素必须互相配合以平衡设计目标,但有一个目标必须不折不扣地实现,那就是符合安全法规。
绝缘材料
数字隔离器采用晶圆 CMOS 工艺制造,仅限于常用的晶圆材料。非标准材料会使生产复杂化,导致可制造性变差且成本提高。常用的绝缘材料包括聚合物(如聚酰亚胺 PI,它可以旋涂成薄膜)和二氧化硅 (SiO2)。二者均具有众所周知的绝缘特性,并且已经在标准半导体工艺中使用多年。聚合物是许多光耦合器的基础,作为高压绝缘体具有悠久的历史
表 1. 基于聚合物 / 聚酰亚胺的隔离器可提供最佳的隔离特性

基于聚合物的光耦合器
基于聚酰亚胺的数字隔离器
基于 SiO2 的数字隔离器
耐受电压(1 分钟)
7.5 kV rms
5 kV rms
5 kV rms
400 V rms 工作电压下的寿命
25 年
50 年
25 年
针对增强型绝缘的浪涌电平
20 kV
12 kV
7 kV
绝缘距离(绝缘厚度)
400 μm
14 μm 至 26 μm
[size=1.059em]7 μm 至 15 μm
安全标准通常规定1 分钟耐压额定值(典型值 2.5 kV rms 至5 kV rms)和工作电压(典型值 125 V rms 至 400 V rms)。某些标准也会规定更短的持续时间、更高的电压(如 10 kV峰值并持续 50 µs)作为增强绝缘认证的一部分要求。基于聚合物 / 聚酰亚胺的隔离器可提高最佳的隔离特性, 如表 1 所示。
基于聚酰亚胺的数字隔离器与光耦合器相似,在典型工作电压时寿命更长。基于 SiO2 的隔离器对浪涌的防护能力相对较弱,不能用于医疗和其他应用。
各种薄膜的固有应力也不相同。聚酰亚胺薄膜的应力低于 SiO2 薄膜,可以根据需要增加厚度。SiO2 薄膜的厚度有限,因而隔离能力也会受限 ;超过 15 µm 时,应力可能会导致晶圆在加工过程中开裂,或者在使用期间分层。基于聚酰亚胺的数字隔离器可以使用厚达 26 µm 的隔离层。
badbcb21fba745659941057de328c97c~noop.image?_iz=58558&from=article.jpg
图 1. (a) 带厚聚酰亚胺绝缘层的变压器,电流脉冲产生磁场,在另一个线圈中感生电流;

ba73f316f05d42a78e1a966a76cfcfb8~noop.image?_iz=58558&from=article.jpg
图 1.(b) 带薄 SiO2 绝缘层的电容,利用低电流电场将数据耦合到隔离栅的另一端

隔离器结构
数字隔离器使用变压器或电容将数据以磁性方式或容性方式耦合到隔离栅的另一端,光耦合器则是使用 LED 光。
如图 1 所示,变压器电流脉冲通过一个线圈,形成一个很小的局部磁场,从而在另一个线圈生成感应电流。电流脉冲很短 (1 ns),因此平均电流很低。
变压采用差分连接,提供高达 100 kV/µs 的出色共模瞬变抗扰度(光耦合器通常约为 15 kV/µs)。磁性耦合对变压器线圈间距离的依赖性也弱于容性耦合对板间距离的依赖性,因此,变压变压器线圈之间的绝缘层可以更厚, 从而获得更高的隔离能力。结合聚酰亚胺薄膜的低应力特性,使用聚酰亚胺的变压器比使用 SiO2 的电容更容易实现高级隔离性能。
电容为单端连接,更容易受共模瞬变影响。虽然可以用差分电容对来弥补,但这会增大尺寸并提高成本。
电容的优势之一是它使用低电流来产生耦合电场。当数据速率较高时(25 Mbps 以上),这一优势就相当明显。
a23384bd2bfe45c8a950fc805a400015~noop.image?_iz=58558&from=article.jpg
图 2. 一种数据传输方法是将边沿编码为单脉冲或双脉冲

数据传输方法
光耦合器使用 LED 发出的光将数据传输到隔离栅的另一端 :LED 点亮时表示逻辑高电平,熄灭时表示逻辑低电平。当 LED 点亮时,光耦合器需要消耗电能 ;对于关注功耗的应用,光耦合器不是一个好的选择。多数光耦合器将输入端和 / 或输出端的信号调理留给设计人员实现, 而这并不一定是非常简单的工作。
数字隔离器使用更先进的电路来编码和解码数据,支持更快的数据传输速度,能够处理 USB 和 I2C 等复杂的双向接口。
一种方法是将上升沿和下降沿编码为双脉冲或单脉冲, 以驱动变压器(图 2)。这些脉冲在副边解码为上升沿或下降沿。这种方法的功耗比光耦合器低 10 倍到 100 倍, 因为不像光耦合器,电源无需连续提供给器件。器件中可以包括刷新电路,以便定期更新直流电平。
另一种方法是使用 RF 调制信号,其使用方式与光耦合器使用光的方式非常相似,逻辑高电平信号将引起连续RF 传输。这种方法的功耗高于脉冲方法,因为逻辑高电平信号需要持续消耗电能。也可以采用差分技术来提供共模抑制,不过,这些技术最好配合变压器等差分元件使用。
选择正确的组合
数字隔离器在尺寸、速度、功耗、易用性和可靠性方面具有光耦合器所无法比拟的巨大优势。在数字隔离器领域,不同的绝缘材料、结构和数据传输方法组合造就不同的产品,而不同的产品适合不同的具体应用。如上所述,基于聚合物的材料提供最鲁棒的隔离能力,这种材料几乎适合所有应用,但医疗保健和重工业设备等要求最严格的应用受益最大。为了实现最鲁棒的隔离,聚酰亚胺厚度可以超过对电容而言的合理厚度 ;因此,基于电容的隔离最适合不需要安全隔离的功能隔离应用。在这种情况下,基于变压器的隔离可能是最合理的,特别是结合差分数据传输方法,以便充分利用变压器的差分特性。
作者 :David KrakauerADI 公司产品线经理