恒流源在各种测量电子电路和传感器电子电路中应用广泛,是开关电源、信号检测和功率放大等场合中不可替代的测试单元。微安级数控恒流源更是广泛地应用于智能仪器和先进检测技术中。与一般的恒流源电路相比,微安级恒流源输出电流小,更易受到电路中纹波和噪声的影响,在器件选择和电路设计方面尤其要注意高  和高阻抗。正是由于这些特点,微安级恒流源的电路设计方法与普通的恒流源电路有所区别。


  1微安级数控恒流源的一般设计方法


  虽然恒流源的电路形式各种各样,但是其电路结构基本一样,都是基于闭环反馈的思想,反馈的形式主要有晶体管反馈、场效应管反馈、并联稳压器反馈、运算放大器反馈等。数控恒流源的一般结构框图如图1所示,根据所需的恒流电路的电流值,系统首先通过微处理器计算出对应的电压值,由DA转换环节输出电压,经过滤波电路的处理,和误差放大、功率放大、电流检测比较放大以及电压电流转换等环节,在负载电阻所在回路输出恒定的电流。


145237654.png


  精密的恒流源电路多是使用运算放大器作为负反馈的误差放大器,以晶体管或场效应管作为功率放大器件,从而形成闭环反馈电路。微安级恒流源电路的设计也是基于这种闭环反馈的思想,所不同的是由于在功率放大环节使用的晶体管或场效应管都有数微安或者数十微安的漏电流,会影响电路的  ,远超过微安级电路所允许的误差范围。而一般运放的输出带载能力都能达到数毫安或者数十毫安,能满足微安级恒流源电路所需的输出要求。因此在微安级恒流源中无需采用功率放大器件,而直接使用运放向负载电阻输出电流。即运放既起到误差放大器的作用,又起到功率放大器的作用。如此设计不仅能满足要求,也能减小由于功率放大引起的误差和功率损耗,提高电路的效率。


145334873.jpg


  图2所示为典型的微安级恒流源电路。DA转换器输出给定电压后,经R1和C1组成的低通滤波器送入运放同相输入端,运放输出端接负载,电流采样电阻R3将输出电流转换为电压,进入运放的反向输入端构成负反馈。图中R3为采样电阻,需采用初始的高、温度漂移系数低的精密电阻。