同步降压拓扑


开关电源的降压拓扑(BUCK)如下图所示,用到了MOS管、电感器和二极管。这个二极管(如下图红框内)是续流二极管或钳位二极管,其正向压降较大、反向功耗大,就算采用了肖特基二极管也是如此。

203428lo6zcjffncyzrnol

肖特基二极管正向压降与电流的关系相对固定:一般电流减少10倍,压降减半;如果采用MOS管,它的正向压降几乎与电流成正比:电流减少10倍,压降也减少10倍(MOS管是单载流子,其导通后的V-I特性(电阻RDS)是同金属导体一样的线性关系,而非半导体。

所以在系统轻载时,二极管相对损耗更大(电源效率更低),而且在输入高压、输出低压时(Toff=T*(1-Vo/Vin))续流二极管的导通时间又占了开关周期的绝大部分。而现在MOS管完全导通电阻RDS小至几mΩ,相比于二极管的压降 > 0.5V,只考虑正向导通功耗的情况下(二极管还有反向恢复功耗),MOS管损耗远小于二极管。

所以是否可以将二极管替换成MOS管呢?

我们知道二极管是不可控开关,只有两个管脚(P,N),而MOS管是可控开关,有3个管脚(G,S,D)。

所以它们在拓扑中是不可以直接互换的,但是只要对MOS管的导通关断进行适当的驱动,是可以完全替代二极管的作用,即MOS管导通/关断时间与被替代的续流二极管导通/关断时间完全相同,其中一种非常简单有效的MOS管驱动方式就是同步驱动方式。

至此在BUCK拓扑开关电源中有了两个MOS管,为了区分两个MOS管的不同位置和作用,称为:上管(高端)和下管(低端)。如下图所示为不同负载程度下,同步BUCK拓扑与非同步(传统)BUCK拓扑对比:

1. 重载时:同步和异步BUCK拓扑都工作在连续导通模式(CCM),两者的工作波形(电感电流)没有本质的差别,如下图重载模式所示,不过根据上面的分析,我们知道同步BUCK拓扑的效率应该会更高;我们看到在重载时,电流方向是固定的:

1, 上管导通时:Vin->Vo(电流增大,能量从Vin转化为电感器磁能以及传输给负载);

2, 下管/续流二极管导通时:GND->Vo(电流减小,能量从电感器的磁能转化为电能传输给负载)。能量一直是向Vo的方向传输。

2. 轻载时:如下图所示,非同步拓扑工作在断续导通模式(DCM),而同步拓扑依然工作在连续导通模式(CCM),而且同步拓扑中的电感电流不会被截止,这主要是因为下管开启阶段MOS管允许反向电流通过,所以根据伏秒公式:ΔV*Δt = L*ΔI,电流必然会反向流向GND和Vin。

203428jnk9kix1dzxuidd8

轻载时(IL<ΔI/2),同步BUCK拓扑进入如下图C和D区域(反向电流),此时BUCK拓扑电流流向:

1,下管导通时:Vo->GND(电流增加,能量从Vo转化为电感器磁能);

2,上管导通时:Vo->Vin(电流减小,能量从电感器磁能转化为电能给Vin充电)。

我们看到轻载时的C/D阶段,能量方向是从Vo(低压)->Vin(高压),而且对照电流流向,这是一个妥妥的升压(BOOST)拓扑;BUCK和BOOST拓扑是互为镜像关系!