1Si
作为半导体材料“霸主“的Si,其性能似乎已经发展到了一个极限,而此时以SiC和GaN为主的宽禁带半导体经过一段时间的积累也正在变得很普及。所以,出现了以Si基器件为主导,SiC和GaN为"游击"形式存在的局面。
在Si之前,锗Ge是最早用于制造半导体器件的材料,随后Si以其取材广泛、易形成SiO2绝缘层、禁带宽度比Ge大的优势取代了Ge,成为主要的半导体材料。随着电力电子技术的飞速发展,Si基半导体器件也在飞速发展,电流、电压等级越高,芯片越薄越小、导通压降越小、开关频率越高、损耗越小等等。任何事物的发展,除了外在力的作用,自身特性也会限制发展,Si基半导体器件似乎已经到了"寸步难行"的地步。而此时,以碳化硅SiC和氮化镓GaN为主的新型半导体材料,也就是我们常说的第三代宽禁带半导体(WBG)"破土而出",以其优越的性能突破的Si的瓶颈,同时也给半导体器件应用带来了显著的提升。
1.jpg
相对于Si,SiC和GaN有着以下几点优势:
❶ 禁带宽度是Si的3倍左右,击穿场强约为Si的10倍;
❷ 更高的耐压能力以及更低的导通压降;
❸ 更快的开关速度和更低的开关损耗;
❹ 更高的开关频率;
❺ 更高的允许工作温度;
❻ SiC具有更高的热导率;
根据上面的优势,第三代宽禁带半导体器件,能够达到更高的开关频率,提高系统效率,同时增大功率密度等,但是目前推动的最大推动力还得看成本

2SiC & GaN
目前,SiC和GaN半导体器件早已进入商业化,常见的SiC半导体器件是SiC Diode、JFET、MOSFET,GaN则以HEMT(高电子迁移率晶体管)为主。
SiC半导体器件:
不同类型的碳化硅器件结构和工艺难度都不一样,一般都是依据其工艺难度依次推出的。可知,SiC Diode便是最早实现商业化碳化硅半导体器件,同时也是历经内部结构和外部封装优化最多的器件,自身耐压能力、抗浪涌能力和可靠性都得到了大大提高,是目前最为成熟的SiC半导体器件。肖特基二极管SBD是最先商业化的碳化硅二极管,其具有较低的导通压降,但是反向漏电流较大,为了限制反向漏电流,结势垒控制肖特基二极管JBS应运而生;随后还有JBS和PiN结合的肖特基二极管MPS,主要都是为了平衡其正向压降和反向漏电流。碳化硅SBD的反向恢复过程很短、反向恢复损耗低,正向压降具有正温度系数,适合多管并联的应用场合,目前商用的主要为MPS二极管。
碳化硅JFET一般为常开型器件,为了实现常断,目前一般是将常开的SiC JFET和一个起控制作用的低压Si MOSFET级联成Cascode结构,即共源共栅结构。
2.png
Cascode结构的SiC JFET能够兼容原先的Si MOSFET或者Si IGBT的驱动电路,并且性能上几乎不会因为多串联了一个器件而产生影响。SiC JFET为单极型器件,没有栅氧层,工艺上比较容易实现且可靠性较高,但是对于驱动电路的控制要求较高,采用Cascode结构是一个不错的选择。
SiC MOSFET是目前倍受工业界关注的SiC半导体器件,其导通电阻小、开关速度快、驱动简单、允许工作温度高等特点,能够提高电力电子装置的功率密度和工作环境温度,适应当前电力电子技术发展的趋势,也是被认为是Si基IGBT的理想替代者(夺权时间待定)。相对而言,SiC MOSFET的工艺步骤更复杂、难度更高,制造工艺的研发时间较长,这也是为什么SiC MOSFET比前两者来得稍晚些。
SiC IGBT?前面我们也有聊到过,就应用领域的性价比来说,SiC IGBT也有,不过相对来说不会太常见。--SiC IGBT--PET的未来?
GaN半导体器件:
氮化镓器件最接地气的就是各类手机快充,GaN器件的性能远由于Si基器件,因为GaN器件的结电容很小,开关速度非常快,能够在几纳秒内完成开关,损耗极小,使得其工作频率达到MHz级别,大大提高了系统的功率密度。GaN半导体器件主要以HEMT为主,我们也叫调制掺杂场效应晶体管MODFET,导通电阻非常小,并且不需要栅极正偏就能形成导电沟道,所以一般为常开器件。为了实现常断,一般可以采用和SiC一样的Cascode结构,还可以优化自身的栅极结构,如在栅极下方生长P+AlGaN,形成深耗尽区,在零偏压的情况下阻断沟道,实现阈值电压大于0V的目的。
虽然SiC和GaN器件已经出现商业化,但是依旧存在很多没有完全解决甚至未知的问题,未完待续。。。。。。

随着SiC和GaN的快速发展,凭借其优异的特性,在电力电子涉及的领域备受关注,不管是半导体器件的制造商,还是半导体器件的应用商,无一不将其放在心上。但除了半导体器件的发展,外部电路,如驱动电路,或者是整个电路拓扑等,也需要不断发展和优化,才能更大程度地发挥宽禁带半导体的优异性能。
虽然宽禁带半导体不再是那么触不可及,但是相对Si基而言,成本依旧是其侵占市场的一大阻碍,但大势所趋仅仅是时间问题。
本文已授作者前辈允许,来源于:https://mp.weixin.qq.com/s/wbP5-4tWyXdcGMjKmIPJaA