阻容降压是一种使用极少的元器件、极低的成本就能实现的交流市电转为直流低压的电路,经常用在体积受限、成本敏感的设备中。阻容降压实际上是利用容抗限流,而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。今天我们就一起来分析一个交流220V转直流5V阻容降压电路。
        这个电路是很多年前看到的,是一个非常经典的电路,出处不详,虽然简单但却很实用。

        我们把它在multisim里面重画了一遍,便于仿真分析,如下图所示:

       


        下面我们把这个电路分成几个部分,分别分析一下。

        先看最左边的部分:

       


        市电交流220V输入之后,首先经过保险丝X2,提供过流保护的功能。然后经过X1和C1,X1是压敏电阻(这里由于mutilsim软件中没有压敏电阻的元器件,我画了一个滑动变阻器代替),主要是用于浪涌防护、防雷击;C6是安规电容,用于滤波。这三个器件的作用,都是为了提高电路的安全性和电磁兼容性。

        接着是R1和C1的组合,以及R2、R3:

       


        电容C1在电路中是用于降压,因为电容可以通过交流,但是理想情况下又不会产生功率消耗。所以,选择一定容值的电容,在交流电通过时有一定的容抗;这个电抗效应与后端的电路串联,分走了一部分电压,可以起到降压的作用。C1的选取对整个电路非常关键,它的容抗的计算公式为Rc=1/(2πfC),容抗要与后端电阻分压,以得到合适的输出。C1耐压至少要400V,而且是无极性电容,可以选取CL21聚酯或者CBB21聚丙烯电容。

        电阻R1用于C1的放电,是为了在断开供电后,C1上的电压能够快速泄放掉。一般要求R1*C1<T,T是时间常数,与市电频率有关,一般选取时间常数小于300ms。R1的耐压要超过市电的最高电压。

        R2和R3是用于保护的,防止某些时候接触不良,在C1有电的情况下,与市电的电压叠加时,对后端的电路产生高压损伤。一般按经验值,取二者之和为40~50Ω之间。

        接下来是两个二极管D1和D2,这部分很简单,就是半波整流电路。其实这里用全波整流桥也是可以的,但是两个二极管更省成本。要注意的是所选择的二极管耐压和电流要足够。

       


        接下来是下面的滤波部分,也比较简单,就是RC滤波。需要注意的是这里的R4的取值,因为R4上会有电流通过,取值太大会浪费很多功率,但是取值太小又会减弱滤波的效果,同时也不能配合后端的稳压管进行稳压,所以需要综合考虑。

       


        最后是稳压管和负载,稳压管工作时是需要和前面串联的R4电阻相互作用的,否则不能稳压。D3选取时,选择与我们需要的电压值最接近的稳压管即可。
        这里也需要注意稳压管的功率,由于输出电压是靠稳压管来调节的。加入负载和不加负载时,这部分电路的电流的变化要由稳压管来调节,所以需要验算一下在最大和最小输出功率的情况下,稳压管是否还能在稳压状态下工作。

       


        好了,到这里,电路就分析完了。其实整个电路的核心,就是完成了降压、整流、滤波、稳压这几个功能。

        我们再做一下电路的仿真:

       


        可以看到,半波整流、电容滤波后的电压,差不多在6V~8V;再经过RC滤波、稳压管稳压后,基本稳定在5.1V左右,而且波动很小。

        同时,也注意到,这个状态下,负载电流很小时,大部分电流都从稳压管上流过去了,效率是比较低的。当负载电流增大时,可以预见R4上的压降也会增加,有可能会导致稳压管上的电压达不到5.1V。所以阻容降压电路不太适用于负载变化较大的情况,一般用于负载基本不变的场合。

        此外,由于阻容降压电路,即使经过了降压,也还有一端直接连接到了市电220V电线上,所以是有一定触电危险性的,一般只能用在人体不会触碰到的场合。

        除了上面分析的这种形式,阻容降压还有很多其他的实现方式,但其核心大多都是采用电容串联降压,之后再整流,最后滤波、稳压。

        下面这个电路中简化了滤波电路:

       


        下面这个电路,把稳压管也用到了整流功能中,又省了一个二极管;并滤波电路也简化了: