一. 解析PCB图形绘制实现
解析PCB图形,说简单也非常简单,先说一下,PCB Gerber图形由:点,线,弧,铜皮,文字 5类元素组成,通常简写为:P,L,A,S,T五类,这几类元素的难易程度,刚好是按这个顺序排列的(个人实际应用这么认为的)。即然是5类就得建立5种元素的数据结构存储它吧。

PAD结构
    /// PAD  数据类型
  •     public struct gP
  •     {
  •         public gPoint p;
  •         public bool negative;//polarity-- positive  negative
  •         public int angle;
  •         public bool mirror;
  •         public string symbols;
  •         public string attribut;
  •         public double width;
  •     }
  • 复制代码
    线结构
    /// Line 数据类型
  • public struct gL
  • {
  •   public gPoint ps;
  •   public gPoint pe;
  •   public bool negative;//polarity-- positive  negative
  •   public string symbols;
  •   public string attribut;
  •   public double width;
  • }
  • 复制代码
    弧结构
      /// ARC 数据类型
  • public struct gA
  • {
  •   public gPoint ps;
  •   public gPoint pe;
  •   public gPoint pc;
  •   public bool negative;//polarity-- positive  negative
  •   public bool ccw; //direction-- cw ccw
  •   public string symbols;
  •   public string attribut;
  •   public double width;
  • }
  • 复制代码
    铜皮结构
      /// Surface 坐标泛型集类1
  •     public struct gSur_Point
  •     {
  •         public gPoint p;
  •         /// 0为折点  1为顺时针 2为逆时针  
  •         public byte type_point;
  •     }
  •     /// Surface 坐标泛型集类2
  •     public class gSur_list
  •     {
  •         public List<gSur_Point> sur_list = new List<gSur_Point>();

  •         /// 是否为空洞
  •         /// </summary>
  •         public bool is_hole { get; set; }

  •         /// 是否逆时针
  •         public bool is_ccw { get; set; }
  •     }
  •     /// Surface 坐标泛型集类3
  •     public class gS
  •     {
  •         public List<gSur_list> sur_group = new List<gSur_list>();
  •         /// 是否为负  polarity-- P N
  •         public bool negative { get; set; }
  •         public string attribut { get; set; }
  •     }
  • 复制代码

    文字结构

    看这个结构比Surface铜皮结构还简单呀,为什么文字结构更复杂了,这里只是实现最普通的字体结构,实际复杂程度远大于Surface,需要解析到所用到的字体库中的的坐标,而且字体存在各式各样的,有二维码,点阵字,有条码,要想保证和Genesis所显示一致,这里需要下点功夫。
        /// Text 文本数据类型  简易型  更复杂的需要扩展
  •     public struct gT
  •     {
  •         public gPoint ps;
  •         public string font;
  •         public bool negative;//polarity-- positive  negative
  •         public int angle;
  •         public bool mirror;
  •         public double x_size;
  •         public double y_size;
  •         public double width;
  •         public string Text;
  •         public string attribut;
  •     }
  • 复制代码
    那么为什么symbols不算一类呢,因为symbols也是由这5类基础元素组合而成的,绘制时检索symbols中所含元素集合,再将Symbols集合遍历一个一个的元素绘制到画板上来的。
    Gerber数据存储到这个结构中后.那用Graphics类,遍历元素集合,依次绘制元素就好了;下面说一下遇到的问题解决方法。

    二.绘制Gerber图形遇到的几个问题解决方法
    1.同一层图形的元素是存在先后顺序的,不能按元素类别分类集合,如List<P>,List<L>,这样是错误的
    若元素要按先后顺序保存,那么这里可以选择用ArrayList集合存储数据
    2.绘制圆形焊盘时,对于Genesis而言它是一个点坐标,在net中是没有直接绘制点方法.
    那么对应net中是用FillEllipse方法绘制就可以了
    3.绘制焊盘有很多种symbols,包含标准symbols和非标准symbols(自定义的),如何判断一个symbols是标准symbols还是非标准symbols呢
    在解析ODB++或Gerber前,提前将自定义symbols名存储为自定义symbols字典集合中,绘制时优先检测symbols名是否存在自定义字典集合中,如果存在,则解析自定义symbosl绘制,如果不存在,则通过标准symbosl名命名规则匹配,不考虑校率用正则也可以的,如:r200,rect200x300,oval200x300,donut_r300x200等,匹配到标准symbols后通过建立各种标准symbols绘制模版,找到对应的symbols模版再绘制。
    4.如绘制:donut_r300x200这个symbols时,是绘制300这个实心圆,再绘制黑色背景实现圆环效果呢,
    其实这样绘制就是错误的,需采用:GraphicsPath类绘制,再用Region类差集裁减掉不需要多余部份图形。
    5.在Gerber图形中一条弧直径只有0.1毫米,转为像素为0,绘制会出错,
    要这里需加以判断,0像素时直接跳出不绘
    6.在Gerber图形中一条线段,线段间距只有0.1毫米, 转为像素为0时,但线宽为5毫米,转为像不为2像素,
    那这是绘呢,还是不绘呢,由于长度像素是0,但线的宽度达到了2个像素,那么就这条线就按一个点来绘制
    7.在Gerber中Surface铜皮中存在空洞时,不能用FillPolygon方法绘制,
    需采用:GraphicsPath类绘制,再用Region类差集裁减掉不需要多余部份图形
    8.在Gerber中Surface铜皮存在弧节点时,不能用FillPolygon方法绘制,这结构它不支持弧节点,
    如果一定要要用FillPolygon可以将弧转为多个节点来绘制多边形,当然另一种方法用GraphicsPath类中增Arc结点来完成弧的绘制
    9.Gerber中如果字体引用了shx字体如何解析呢
    这里就需要熟悉shx的数据结构了才行了,不然一点办法也没有
    点击进去:
    https://wenku.baidu.com/view/0f7d49c4aa00b52acfc7cab3.html 这是解析方法,解析后再转为坐标数据就可以了
    10.果是:canned_57,standard等字体如何解析呢
    这是Genesis自带字体,文件一般存放在:C:\genesis\fw\lib\fonts,这是明文坐标很好解决,直接解析就好了。

    三.5类元素基本数据结构
    这是基本的不全面,可以扩展并改进的.
    /// 点  数据类型 (XY)
  •     /// </summary>
  •     public struct gPoint
  •     {
  •         public gPoint(gPoint p_)
  •         {
  •             this.x = p_.x;
  •             this.y = p_.y;
  •         }
  •         public gPoint(double x_val, double y_val)
  •         {
  •             this.x = x_val;
  •             this.y = y_val;
  •         }
  •         public double x;
  •         public double y;
  •         public static gPoint operator +(gPoint p1, gPoint p2)
  •         {
  •             p1.x += p2.x;
  •             p1.y += p2.y;
  •             return p1;
  •         }
  •         public static gPoint operator -(gPoint p1, gPoint p2)
  •         {
  •             p1.x -= p2.x;
  •             p1.y -= p2.y;
  •             return p1;
  •         }


  •     }

  •     /// <summary>
  •     /// 精简 PAD  数据类型
  •     /// </summary>
  •     public struct gPP
  •     {
  •         public gPP(double x_val, double y_val, double width_)
  •         {
  •             this.p = new gPoint(x_val, y_val);
  •             this.symbols = "r";
  •             this.width = width_;
  •         }
  •         public gPP(gPoint p_, double width_)
  •         {
  •             this.p = p_;
  •             this.symbols = "r";
  •             this.width = width_;
  •         }
  •         public gPP(gPoint p_, string symbols_, double width_)
  •         {
  •             this.p = p_;
  •             this.symbols = symbols_;
  •             this.width = width_;
  •         }
  •         public gPoint p;
  •         public string symbols;
  •         public double width;
  •         public static gPP operator +(gPP p1, gPP p2)
  •         {
  •             p1.p += p2.p;
  •             return p1;
  •         }
  •         public static gPP operator +(gPP p1, gPoint p2)
  •         {
  •             p1.p += p2;
  •             return p1;
  •         }
  •         public static gPP operator -(gPP p1, gPP p2)
  •         {
  •             p1.p -= p2.p;
  •             return p1;
  •         }
  •         public static gPP operator -(gPP p1, gPoint p2)
  •         {
  •             p1.p -= p2;
  •             return p1;
  •         }
  •     }
  •     /// <summary>
  •     /// PAD  数据类型
  •     /// </summary>
  •     public struct gP
  •     {
  •         public gP(double x_val, double y_val, double width_)
  •         {
  •             this.p = new gPoint(x_val, y_val);
  •             this.negative = false;
  •             this.angle = 0;
  •             this.mirror = false;
  •             this.symbols = "r";
  •             this.attribut = string.Empty;
  •             this.width = width_;
  •         }
  •         public gP(gPoint p_, double width_)
  •         {
  •             this.p = p_;
  •             this.negative = false;
  •             this.angle = 0;
  •             this.mirror = false;
  •             this.symbols = "r";
  •             this.attribut = string.Empty;
  •             this.width = width_;
  •         }
  •         public gP(gPoint p_, string symbols_, double width_)
  •         {
  •             this.p = p_;
  •             this.negative = false;
  •             this.angle = 0;
  •             this.mirror = false;
  •             this.symbols = symbols_;
  •             this.attribut = string.Empty;
  •             this.width = width_;
  •         }

  •         public gPoint p;
  •         public bool negative;//polarity-- positive  negative
  •         public int angle;
  •         public bool mirror;
  •         public string symbols;
  •         public string attribut;
  •         public double width;
  •         public static gP operator +(gP p1, gP p2)
  •         {
  •             p1.p += p2.p;
  •             return p1;
  •         }
  •         public static gP operator +(gP p1, gPP p2)
  •         {
  •             p1.p += p2.p;
  •             return p1;
  •         }
  •         public static gP operator +(gP p1, gPoint p2)
  •         {
  •             p1.p += p2;
  •             return p1;
  •         }
  •         public static gP operator -(gP p1, gP p2)
  •         {
  •             p1.p -= p2.p;
  •             return p1;
  •         }
  •         public static gP operator -(gP p1, gPP p2)
  •         {
  •             p1.p -= p2.p;
  •             return p1;
  •         }
  •         public static gP operator -(gP p1, gPoint p2)
  •         {
  •             p1.p -= p2;
  •             return p1;
  •         }
  •     }
  •     /// <summary>
  •     /// Line 数据类型
  •     /// </summary>
  •     public struct gL
  •     {
  •         public gL(double ps_x, double ps_y, double pe_x, double pe_y, double width_)
  •         {
  •             this.ps = new gPoint(ps_x, ps_y);
  •             this.pe = new gPoint(pe_x, pe_y);
  •             this.negative = false;
  •             this.symbols = "r" + width_.ToString();
  •             this.attribut = string.Empty;
  •             this.width = width_;
  •         }
  •         public gL(gPoint ps_, gPoint pe_, double width_)
  •         {
  •             this.ps = ps_;
  •             this.pe = pe_;
  •             this.negative = false;
  •             this.symbols = "r" + width_.ToString();
  •             this.attribut = string.Empty;
  •             this.width = width_;
  •         }
  •         public gL(gPoint ps_, gPoint pe_, string symbols_, double width_)
  •         {
  •             this.ps = ps_;
  •             this.pe = pe_;
  •             this.negative = false;
  •             this.symbols = symbols_;
  •             this.attribut = string.Empty;
  •             this.width = width_;
  •         }
  •         public gPoint ps;
  •         public gPoint pe;
  •         public bool negative;//polarity-- positive  negative
  •         public string symbols;
  •         public string attribut;
  •         public double width;
  •         public static gL operator +(gL l1, gPoint move_p)
  •         {
  •             l1.ps += move_p;
  •             l1.pe += move_p;
  •             return l1;
  •         }
  •         public static gL operator +(gL l1, gPP move_p)
  •         {
  •             l1.ps += move_p.p;
  •             l1.pe += move_p.p;
  •             return l1;
  •         }
  •         public static gL operator +(gL l1, gP move_p)
  •         {
  •             l1.ps += move_p.p;
  •             l1.pe += move_p.p;
  •             return l1;
  •         }
  •         public static gL operator -(gL l1, gPoint move_p)
  •         {
  •             l1.ps -= move_p;
  •             l1.pe -= move_p;
  •             return l1;
  •         }
  •         public static gL operator -(gL l1, gPP move_p)
  •         {
  •             l1.ps -= move_p.p;
  •             l1.pe -= move_p.p;
  •             return l1;
  •         }
  •         public static gL operator -(gL l1, gP move_p)
  •         {
  •             l1.ps -= move_p.p;
  •             l1.pe -= move_p.p;
  •             return l1;
  •         }
  •     }
  •     /// <summary>
  •     /// ARC 数据类型
  •     /// </summary>
  •     public struct gA
  •     {
  •         public gA(double ps_x, double ps_y, double pc_x, double pc_y, double pe_x, double pe_y, double width_, bool ccw_)
  •         {
  •             this.ps = new gPoint(ps_x, ps_y);
  •             this.pc = new gPoint(pc_x, pc_y);
  •             this.pe = new gPoint(pe_x, pe_y);
  •             this.negative = false;
  •             this.ccw = ccw_;
  •             this.symbols = "r" + width_.ToString();
  •             this.attribut = string.Empty;
  •             this.width = width_;
  •         }
  •         public gA(gPoint ps_, gPoint pc_, gPoint pe_, double width_, bool ccw_ = false)
  •         {
  •             this.ps = ps_;
  •             this.pc = pc_;
  •             this.pe = pe_;
  •             this.negative = false;
  •             this.ccw = ccw_;
  •             this.symbols = "r" + width_.ToString();
  •             this.attribut = string.Empty;
  •             this.width = width_;
  •         }
  •         public gPoint ps;
  •         public gPoint pe;
  •         public gPoint pc;
  •         public bool negative;//polarity-- positive  negative
  •         public bool ccw; //direction-- cw ccw
  •         public string symbols;
  •         public string attribut;
  •         public double width;
  •         public static gA operator +(gA arc1, gPoint move_p)
  •         {
  •             arc1.ps += move_p;
  •             arc1.pe += move_p;
  •             arc1.pc += move_p;
  •             return arc1;
  •         }
  •         public static gA operator +(gA arc1, gPP move_p)
  •         {
  •             arc1.ps += move_p.p;
  •             arc1.pe += move_p.p;
  •             arc1.pc += move_p.p;
  •             return arc1;
  •         }
  •         public static gA operator +(gA arc1, gP move_p)
  •         {
  •             arc1.ps += move_p.p;
  •             arc1.pe += move_p.p;
  •             arc1.pc += move_p.p;
  •             return arc1;
  •         }
  •         public static gA operator -(gA arc1, gPoint move_p)
  •         {
  •             arc1.ps -= move_p;
  •             arc1.pe -= move_p;
  •             arc1.pc -= move_p;
  •             return arc1;
  •         }
  •         public static gA operator -(gA arc1, gPP move_p)
  •         {
  •             arc1.ps -= move_p.p;
  •             arc1.pe -= move_p.p;
  •             arc1.pc -= move_p.p;
  •             return arc1;
  •         }
  •         public static gA operator -(gA arc1, gP move_p)
  •         {
  •             arc1.ps -= move_p.p;
  •             arc1.pe -= move_p.p;
  •             arc1.pc -= move_p.p;
  •             return arc1;
  •         }

  •     }
  •     /// <summary>
  •     /// Text 文本数据类型  简易型  更复杂的需要扩展
  •     /// </summary>
  •     public struct gT
  •     {
  •         public gPoint ps;
  •         public string font;
  •         public bool negative;//polarity-- positive  negative
  •         public int angle;
  •         public bool mirror;
  •         public double x_size;
  •         public double y_size;
  •         public double width;
  •         public string Text;
  •         public string attribut;
  •     }
  •     /// <summary>
  •     /// Surface 坐标泛型集类1
  •     /// </summary>
  •     public struct gSur_Point
  •     {
  •         public gSur_Point(double x_val, double y_val, byte type_point_)
  •         {
  •             this.p.x = x_val;
  •             this.p.y = y_val;
  •             this.type_point = type_point_;
  •         }
  •         public gSur_Point(gPoint p, byte type_point_)
  •         {
  •             this.p = p;
  •             this.type_point = type_point_;
  •         }
  •         public gPoint p;
  •         /// <summary>
  •         /// 0为折点  1为顺时针 2为逆时针  
  •         /// </summary>
  •         public byte type_point;
  •     }
  •     /// <summary>
  •     /// Surface 坐标泛型集类2
  •     /// </summary>
  •     public class gSur_list
  •     {
  •         public List<gSur_Point> sur_list = new List<gSur_Point>();
  •         /// <summary>
  •         /// 是否为空洞
  •         /// </summary>
  •         public bool is_hole { get; set; }
  •         /// <summary>
  •         /// 是否逆时针
  •         /// </summary>
  •         public bool is_ccw { get; set; }
  •     }
  •     /// <summary>
  •     /// Surface 坐标泛型集类3
  •     /// </summary>
  •     public class gS
  •     {
  •         public List<gSur_list> sur_group = new List<gSur_list>();
  •         /// <summary>
  •         /// 是否为负  polarity-- P N
  •         /// </summary>
  •         public bool negative { get; set; }
  •         public string attribut { get; set; }
  •     }
  •     /// <summary>
  •     /// 整层Layer坐标泛型集类
  •     /// </summary>
  •     public class gLayer  //坐标
  •     {
  •         public List<gP> Plist = new List<gP>();
  •         public List<gL> Llist = new List<gL>();
  •         public List<gA> Alist = new List<gA>();
  •         public List<gT> Tlist = new List<gT>();
  •         public List<gS> Slist = new List<gS>();
  •     }
  • 复制代码

    来源:多物理场仿真技术