零漂移放大器可动态校正其失调电压并重整其噪声密度。自稳零型和斩波型是两种常用类型,可实现 nV 级失调电压和极低的失调电压时间/温度漂移。放大器的1/f 噪声也视为直流误差,也可一并消除。零漂移放大器为设计师提供了很多好处:首先,温漂和 1/f 噪声在系统中始终起着干扰作用,很难以其它方式消除,其次,相对于标准的放大器,零漂移放大器具有较高的开环增益、电源抑制比和共模抑制比,另外,在相同的配置下,其总输出误差低于采用标准精密放大器的输出误差。
零漂移放大器适合哪些应用?
零漂移放大器适用于预期设计寿命 10 年以上的系统,以及使用高闭环增益 (>100) 和低频 (<100 Hz)、低幅度信号的信号链。应用示例包括精密电子秤、医疗仪器、精密计量设备和红外/电桥/热电堆传感器接口。
自稳零型放大器的工作原理
自稳零型放大器,如AD8538、AD8638、AD8551 和 AD8571系列,通常分两个时钟阶段校正输入失调。在时钟阶段A中,开关φA 闭合,开关 φB 断开,如图 1 所示。指零放大器的失调电压经过测量后,储存在电容 CM1上。
图1. 自稳零型放大器的阶段A:零点校准阶段
在时钟阶段 B 中,开关φB 闭合,开关φA 断开,如图 2 所示。主放大器的失调电压经过测量后,储存在电容CM2上,同时,储存在电容CM1中的电压调节指零放大器的失调。进而,在处理输入信号时将总失调电压施加到主放大器上。
图 2. 自稳零型放大器的阶段 B:自稳零阶段
采样保持功能会将自稳零型放大器变为采样数据系统,使其容易发生混叠和折回效应。低频时,噪声变化缓慢,因此两个连续噪声采样相减可实现真正的抵消。高频时,这种相关性减弱,相减误差导致宽带成分折回基带。因此,自稳零型放大器的带内噪声高于标准运算放大器。为了减少低频噪声,必须提高采样频率,但这会引入额外的电荷注入。信号路径仅包括主放大器,因而可以获得相对较大的单位增益带宽。
斩波放大器的工作原理
图 3 显示斩波型放大器 ADA4051 的功能框图,它采用本地自动校正反馈 (ACFB) 环路。主信号路径包括输入斩波网络CHOP1、跨导放大器 Gm1、输出斩波网络 CHOP2 和跨导放大器Gm2。CHOP1 和CHOP2 将来自Gm 1 初始失调和1/f 噪声调制到斩波频率。跨导放大器 Gm3 检测 CHOP2 输出端的调制纹波,斩波网络 CHOP3 将该纹波解调回 DC。所有三个斩波网络的开关频率均为40 kHz。最后,跨导放大器Gm4 消除 Gm1 输出端的直流成分,否则,它会作为纹波出现在总输出中。开关电容陷波滤波器 (SCNF) 有选择地抑制不需要的失调相关纹波,但不会干扰总输出中的有用输入信号,它与斩波时钟同步,以便完全地滤除调制分量。
图3. ADA4051 所用斩波方案
使用零漂移放大器时会遇到哪些应用问题?
零漂移放大器是利用数字电路动态校正模拟失调误差的复合放大器。数字开关动作会造成电荷注入、时钟馈通、交调失真和过载恢复时间延长,从而可能在设计不佳的模拟电路中引起问题。时钟馈通的幅度随着闭环增益或信号源阻抗增大而增大;在输出端增加一个滤波器,或者在同相输入端使用一个低值电阻,可以减小其影响。此外,输入频率越接近斩波频率,零漂移放大器的输出纹波越大。
对频率高于内部时钟频率的信号有何影响?
频率高于自稳零频率的信号会被放大。自稳零型放大器的速度取决于增益带宽积,后者取决于主放大器,而不是零点校准放大器;自稳零频率指示何时开始出现开关伪像。
自稳零型与斩波型有何区别?
自稳零型通过采样校正失调,斩波型则采用调制和解调。采样会导致噪声折回基带,因此自稳零型放大器的带内噪声较大。为了抑制噪声,需要使用更大电流,因此其功耗一般较高。斩波型放大器具有与其平带噪声一致的低频噪声,但在斩波频率时会产生大量能量和谐波。可能需要进行输出滤波,因此这些放大器最适合低频应用。自稳零和斩波技术的典型噪声特性如图 5 所示。
图5. 各种放大器结构的典型噪声与频率的关系
何时用自稳零型放大器?何时用斩波型放大器?
斩波型放大器适合低功耗、低频应用(<100 Hz),自稳零型放大器则更适合宽带应用。AD8628集自稳零和斩波两种技术于一体,堪称要求低噪声、无开关毛刺、宽带宽应用的理想之选。表1列出一些设计的利弊因素。
来源:ADI