电源在为负载提供能量的同时也在燃烧自己,在电源设计时大家会很仔细的去分析负载的需求,但是容易忽略电源芯片或者其外围器件的热耗,对电源热耗的评估的目的是为了保证电源始终工作在一个安全的状态(不会被热保护或者烧毁)。评估热耗的第一步工作是计算电源方案的耗散功率(被损耗掉的功率),评估耗散功率有两种方法,黑盒和白盒。
一、黑盒方式评估电源的耗散功率
电源芯片及外围的器件的热耗占电源的输入总功率的比例就是电源的效率,所以我们可以从电源的效率反推得到电源的耗散功率,如图1.1。
图 1.1 电源的功率传输
由图1.1推导得知耗散功率的计算公式如下: (式1.1)
式1.1是从效率和输出功率Po反推得到耗散功率的。为什么要选择输出功率而不是输入功率呢?因为输出功率的数据比较容易取得,就是负载的实际需求,相比之下输入电压的范围比较宽泛,所以输入功率比较难定量得到。那么电源效率的数据如何去获取呢?很简单,如果是线性稳压器,那么效率就是输出电压与输入电压的比值(V0/Vin),因为输出电流约等于输入电流;如果是开关电源,电源效率可以估为85%,如需要更为精确可以查芯片规格书的图表,如图1.2示例。
图 1.2 某电源芯片的效率图表示意
二、白盒方式计算电源的耗散功率线性稳压器的原理单纯且多为集成模块,所以了解如何使用黑盒方式计算耗散功率一般已经足够。相比之下开关电源的集成度较弱,所以有时候需要分解子模块且单独计算其耗散功率,这就是所谓的白盒模式。本文均以Buck为例,其它拓补形式可自行类推。
在BUCK电路的技术演变过程中出现了两个小分支,同步Buck与非同步Buck。两者的外观差异明显很好区分,有上下两个MOSFET管的Buck叫同步Buck;只有上管MOSFET,续流管是肖特基二极管的Buck叫做非同步Buck。同步Buck是后面发展出来的技术,使用MOSFET来代替续流二极管降低了导通压降,所以提升了电源效率,当然需要额外增加一套MOSFET驱动电路成本有所上升。
图1.3 同步与非同步Buck
开关电源的损耗主要由两大块组成,路径损耗与开关损耗。1、路径损耗(传导损耗):大电流路径上的内阻上的损耗。以BUCK为例,路径损耗包括上臂MOSFET的内阻损耗,电感的寄生阻抗(DCR)上的损耗及下臂MOSFET或者续流二极管上的损耗。
2、开关损耗:开通和关闭MOSFET过程中的损耗,与开关频率成正比。
(一)、理解开关损耗
路径损耗比较好理解,很直观,我们来着重介绍一下开关损耗的产生原因。如图1.4所示,上桥臂MOSFET的漏极连接至Vin,而源极连接至相位节点。当上桥臂开始开启时,下桥臂MOSFET的体二极管(非同步BUCK同理)会将相位点箝位为低于地电压(负压)。这种很大的漏-源电压差及且上桥臂MOSFET也以开关方式传输转换器的完全负载电流,所以在开关过程中产生了开关损耗。
图1.4 Buck的开关损耗示意
图1.5 MOSFET的寄生电容
图1.5是MOSFET的寄生电容示意,图1.6是上桥臂MOSFET的开关损耗图形,这是理想图形并假设栅极电流是恒定的。开关损耗的产生机理与MOSFET的寄生电容相关。图1.6 上桥臂MOSFET的理想开关损耗图形
开关损耗产生过程详细分析:
1、在时间段t1开始时,当MOSFET驱动器开始向MOSFET的栅极提供电流时,VGS(MOSFET 的栅 - 源电压)开始上升。在此期间,将对输入电容 Ciss(CGS + CGD)进行充电,而 VDS(MOSFET 的漏 - 源电压)保持恒定。此时不存在漏 - 源电流,因此,在此期间没有开关损耗。==>VGS小于阈值,MOSFET未开启,无损耗。
2、在时间段 t2 开始时, VGS 电压超出栅 - 源阈值电压(VGS(TH))。电流开始从漏极流向源极,同时 Ciss继续充电。该电流将线性上升,直到 Ids 等于电感电流 IL 为止。由于 MOSFET 上存在等于 VIN 的电压降,并且电流Ids 流过器件,所以此期间存在显著的开关损耗。==>VGS大于阈值,MOSFET开闸,损耗递增,顶点为输出电流正好满足负载需求处。
3、在时间段 t3 期间, Ids 电流保持恒定, Vds 电压开始下降。虽然漏 - 源电压在下降,但几乎所有的栅极电流都于对 CGD 进行充电。由于几乎没有栅极电流用于对 CGS充电,所以栅 - 源电压在一个称为“开关点”电压(VSP)的电压下保持相对平坦。该区域通常称为米勒平坦区(Miller Plateau)。在此时间段期间,类似于 t2,也存在漏 - 源电压降,并且有显著电流流过器件。因此,t3 是开关周期会产生损耗的一个时间段。==>VGS电平进入僵持阶段,MOSFET通道的深度加强,VDS压差下降,损耗递减,为转折点。
4、在超出时间段 t3 时,MOSFET 通道增强,最高至 VGS达到其最大值的电压点。开关损耗已经停止,传导损耗开始出现,直到上桥臂 MOSFET 关闭为止。关闭事件的情形是非常类似的,以开启事件的相反形式发生。===>VGS电平突破僵持继续上升,MOSFET的通道继续增强,开关损耗退出舞台,传导损耗登场。
MOSFET的关闭过程的损耗与上述描述类似,步骤相反而已,所以开关损耗包括开启和关闭两部分,经提炼计算公式如下。
(二)、传导损耗的计算
1)、MOSFET的传导损耗,上下臂MOSFET的表述一致只是所占时间段不一样,用占空比区分。
上臂MOSFET的传导损耗:
3)、电感损耗
(三)、其它损耗的分析
MOSFET除了开关和传导损之外,还有少量损耗由于其它因素引起的,因为所占比重较低,所以在非精确计算时一般被忽略。
1)、对栅极寄生电容充电引起的损耗,上下臂MOSFET的计算方式一致,公式如下:
5)、芯片本身损耗
三、黑盒和白盒的协同
白盒和黑盒两种计算方式各有千秋,黑盒方式虽简单粗暴但是有效,白盒方式虽精打细算但是很多参数无法精确获得。譬如 RDS(ON) 取决于器件的结温,而损耗会使结温升高,为了得到精确的结果,需要进行迭代计算,这些迭代必须执行到器件的结温稳定(通常到 < 1%)为止,这无疑增加了计算的复杂性和难度。
在工程应用中,我们需要避免复杂的计算公式,所以比较简便实用的方式是先用黑盒的方式计算得到电源的整体耗散功率,然后使用白盒方式计算外围关键器件的耗散功率,两者相减就是在芯片上耗散的功率,然后再根据热电阻等参数进行热耗分析。开关电源的关键外围器件一般就是电感、续流二极管或MOSFET,所以计算比较简单。
四、热耗分析
耗散功率的计算最后需要换算为热耗才会有实际意义,这是是否需要额外增加散热措施的参考依据。
耗散功率与热耗之间的联系纽带是热阻,如图1.7与1.8所示。
图1.8 带散热片的热阻计算
在进行热耗分析时,根据内核至环境的热阻Rja及芯片的耗散功率Pd可估算出芯片在特定的环境温度Ta下的内核温度Tj,以芯片的内核温度Tj是否超过了极值Tjmax作为判断芯片是否安全的依据。计算公式如下:作者:子慕云(知乎)