效率是电源测试中十分常见的测试项,高效的电源表现是众多厂家一直追求的目标。在芯片的规格书中,一般会提供几种常见输入输出应用下的效率曲线。当我们实际的应用范围与规格书上不同,或者在demo板的基础上我们进行了其他改动时,就需要重新进行效率测试。本文就来讲一讲如何进行效率测试以及一些注意事项。欢迎指正与补充。
1. 测量值
根据效率的计算公式可知
在测效率时,需要测得Vin、Vout、Iin、Iout这四个值(或者Pout和Pin),进行计算,即可得到最终结果。
2. 四表法
最常见的效率测量方式是四表法,即用四个万用表来测得以上四各参数。常见的万用表都是同时具有电流档和电压档的。
连接示意图如下:
tips:
- 使用电流档时,需将万用表串联在电路中,注意电流流向;使用电压档时,则是并联,注意正负极。
- 使用电流档时,一开始要用安培档,若是显示位数不够精确时,再更换至毫安档进行测试。用毫安档进行测试的情况下,调高负载电流时,要注意是否超过毫安档量程(一般在400mA)。若是不小心超过量程,会导致万用表内保险丝烧毁,更换保险丝后,才能继续使用毫安档进行测试。
- 两个电压表都接在板端,且连接线尽量短。不要接在电源端和负载端去读取数据,这样会较多地计入连接线上的产生的损耗,影响测试结果。
- 若想用电子负载直接读取输出部分的数据,可以用圆环连接线,圆环端直接焊在demo板上,另一端连接至电子负载。这样测试产生的损耗比直接用夹子连接产生的少。但一般还是会比用万用表测得的效率低些。
- 若是遇到超过万用表量程的情况,可以用电子负载读数,也可以用量程范围较大的功率计直接测量输出功率。
3. 测试步骤
以简单的BUCK电路为例,效率测试的步骤大致如下:
(1 确定需要测试的条件:输入输出电压以及输出电流。在轻载电流部分,需要多取几个点;重载部分,取点间隔可以稍大。例如,Iout=0-6A,测试点可取:0A, 0.1A, 0.3A, 0.5A, 0.8A, 1A, 1.5A, 2A, 2.5A, 3A, 3.5A, 4A, 4.5A, 5A, 5.5A, 6A。
(2 确认测试板在测试条件下工作正常,输入输出电压正确,观察SW波形,在轻载和重载时SW波形都正常,无啸叫和异常发热。
(3 断电,按照上述示意图,将四个万用表接入电路,电流表置于安培档位。连接完成后,重新上电。
(4 上电后,即可按照测试条件,慢慢调整负载电流,需要等万用表上数值稳定后,再记录测试数据。输入电压可能会随着负载电流的上升有所下降,低于测试条件。此时,需要适当抬高输入电压,尽量保持测试输入电压的万用表上的数据与测试条件一致。
4. 报告形式
除了将测试到的Vin Vout Iin Iout 填入表格,得到相应的计算结果。为了更直观地表现结果并与其他芯片做对比,一般会画出效率曲线。
如下图,是MP4581在Vin=24V/36V/48V, Vout=12V, Iout=1mA-800mA情况下测得的效率结果:
一般DCDC电源的效率在轻载时较低,最高效率点出现在较重载的时候。效率曲线较为平滑,如果画出的效率曲线出现突然上冲或者下落的点,可以重新测试那一点的效率,确认数据的正确性。
对于绝大部分buck芯片而言其上下两管都集成到芯片内部,那么该如何观测两管的工作状况呢?实际应用中我们通过观测上下两管交替点的电压来判断上下MOS管的开通与关断情况,并将这一点称为SW,如下图所示,
怎么测SW :
以MP2332为例,作为一款完全集成的高频、同步、整流、降压开关变换器,MP2332采用恒定导通时间 (COT) 控制实现了快速瞬态响应、简单的环路设计和快速输出调节。在宽输入4.2V到1.8V范围内可以满足 2A 的输出电流,除此外MP2332还有出色的负载和线性调节性能及优秀的待机功耗,其静态电流 Iq 只有200μA。
应用实例:
在EV2332板上,只需要将示波器探头钩住该SW测试点,探头接地端接GND测试点,当正常上电后,即可在示波器上读出SW电压波形。线路连接图如下:
SW图像读取信息:
通过SW波形可以判断出芯片工作状态:轻载降频PFM和CCM状态。
MP2232空载启动时SW波形**:**为了在短时间内建立输出电压,开关比较密集,当输出电压建立后开关波形稀疏间隔约2ms才会有开关动作。轻载条件下,MOS管导通交叠区产生的开关损耗占据主导地位,为了提高效率,芯片将进入轻载降频模式PFM。当电感电流降为零时,low-side driver进入(Hi-Z)态。输出电容通过电阻R1和R2缓慢放电到GND。当VFB下降到VREF以下时,高边MOS打开此时才会在示波器上看到SW波形。输出电压会通过电感与MOS寄生电容进行LC谐振放电。
将上述PFM的SW波形展开即为下图,这里可以结合CH4电感电流进行分析。第一阶段:上管导通,Vin给电感和负载供电,电感电流以固定斜率上升(U_L=L di/dt )。第二阶段:上管关断,下管续流,此时电感电流以固定斜率下降。第三阶段:电感储能释放完毕,续流回路断开,但此时上管还未打开,电感及回路中寄生电容会形成LC阻尼震荡,以Vout为中心进行谐振。
MP2232 当电感电流不再为零,芯片将进入连续导通模式(CCM)。即上下管交替开通关断,当高侧MOSFET (HS-FET)处于关断状态时,低侧MOSFET(LS-FET)导通,两管交替导通,此时SW波形为固定频率下的PWM波形。
将CCM 的SW波形展开即为下图:
在此情况下SW我们可以读出上下管分别导通的时间,如图中高电平为上管开通时间,其电压值等于Vin,低电平为下管的开通时间其电压值等于0。对于一个周期而言,上管开通时间ton与整个周期T的比值为占空比D。在CCM模式下,设输入电压为E,输出电压为U(平均值)。在整个周期内
化简后可以得到 D=U/E。
由此可知,在实际操作中,我们可以通过观测PFM和CCM 等不同状态下的SW波形,分析判断buck电路工作是否正常。
由此可知,在实际操作中,我们可以通过观测PFM和CCM 等不同状态下的SW波形,分析判断buck电路工作是否正常。