秒懂5G!通俗易懂外行也能看明白!
  这一切,要从一个“神奇的公式”说起。。。
  一个神奇的公式。。。

  就是这个公式。。。
  
  还记得这个公式的童鞋,请骄傲地为自己鼓个掌。。。
  如果不记得,或是看不懂,也没关系,小枣君解释一下。。。
  
  就是这个超简单的公式,蕴含了我们无线通信技术的博大精深。。。
  无论是往事随风的1G、2G、3G,还是意气风发的4G、5G,说来说去,都是在这个数学公式上做文章。。。
  且听我慢慢道来。。。
  有线?无线?……

  通信技术,无论什么黑科技白科技,只分两种——有线通信和无线通信
  我和你打电话,信息数据要么在空中传播(看不见、摸不着),要么在实物上传播(看得见、摸得着)。。。
  
  在有线介质上传播数据,想要高速很容易。。。
  实验室中,单条光纤最大速度已达到了26Tbps。。。是传统网线的两万六千倍。。。
  
  而空中传播这部分,才是移动通信的瓶颈所在。。。
  
  所以,5G重点是研究无线这部分的瓶颈突破。
  好大一个波。。。

  大家都知道,电波和光波都属于电磁波。。。
  电磁波的频率资源有限,根据不同的频率特性,有不同的用途。。。
  
  我们目前主要使用电波进行通信。。。
  当然,光波通信也在崛起,例如可见光通信LiFi(LightFidelity)
  ▼图片来自网络
  
  不偏题,回到电波先。。。
  电波属于电磁波的一种,它的频率资源也是有限的。。。
  为了避免干扰和冲突,我们在电波这条公路上进一步划分车道,分配给不同的对象和用途。。。
  ▼不同频率电波的用途
  
  大家注意上面图中的红色字体。一直以来,我们主要是用中频~超高频进行手机通信的。。。
  例如经常说的“GSM900”、“CDMA800”,其实就是工作频段900MHz和800MHz的意思。。。
  目前主流的4G LTE,属于超高频和特高频。。。
  我们国家主要使用超高频:
  
  随着1G、2G、3G、4G的发展,使用的频率是越来越高的。。。
  为什么呢?
  因为频率越高,速度越快。。。
  又为什么呢?
  因为频率越高,车道(频段)越宽。。。
  
  看懂了吧。。。车道按指数级扩大。。。
  
  更高的频率→更大的带宽→更快的速度
  
  5G的频段具体是多少呢?
  上个月,我们国家工信部下发通知,明确了我国的5G初始中频频段:
  3.3-3.6GHz、4.8-5GHz两个频段
  同时,24.75-27.5GHz、37-42.5GHz高频频段正在征集意见。
  目前,国际上主要使用28GHz进行试验(这个频段也有可能成为5G最先商用的频段)。
  如果按28GHz来算,根据前文我们提到的公式:
  
  好啦,这个就是5G的第一个技术特点——
  毫米波

  继续,继续。。。
  既然,频率高这么好,你一定会问:“为什么以前我们不用高频率呢?”
  原因很简单——不是不想用。。。是用不起。。。
  电磁波的一个显著特点:频率越高(波长越短),就越趋近于直线传播(绕射能力越差)。。。
  而且,频率越高,传播过程中的衰减也越大。。。
  你看激光笔(波长635nm左右),射出的光是直的吧,挡住了就过不去了。。。
  再看卫星通信和GPS导航(波长1cm左右),如果有遮挡物,就没信号了吧。。。
  而且,卫星那口大锅,必须校准瞄着卫星的方向。。。稍微歪一点,都会有影响。。。
  
  如果5G用高频段,那么它最大的问题,就是覆盖能力会大幅减弱。
  覆盖同一个区域,需要的基站数量将大大超过4G。
  
  这就是为什么这些年,电信、移动、联通为了低频段而争得头破血流。。。
  基站就是要花钱买的啊。。。能不玩命争取么。。。
  有的频段甚至被称为——黄金频段。。。
  
  这也是为什么5G时代,运营商拼命怼设备商。。。
  甚至威胁要自己研发通信设备。。。
  

  所以,基于以上原因。。。
  在高频率的前提下,为了减轻覆盖方面的成本压力,5G必须寻找新的出路。。。
  首先,是微基站。
  微基站

  基站有两种,微基站和宏基站。看名字就知道,微基站很小,宏基站很大!
  以前都是大的基站,建一个覆盖一大片 ▼

  以后更多的将是微基站,到处都装,随处可见。
  ▼微基站 看上去是不是很酷炫?

  微基站的造型有很多种,灵活地与周围的环境相融合(伪装),不会让用户在心理上产生不适。。。
  提醒
  基站对人体健康不会造成影响。
       ——小枣君宣  而且,恰好相反,其实基站数量越多,辐射反而越小!
  你想一下,冬天,一群人的房子里,一个大功率取暖器好,还是几个小功率取暖器好?
  大功率方案▼

  小功率方案▼

  基站越小巧,数量越多,覆盖就越好,速度就越快。。。
  天线去哪了?

  大家有没有发现,以前大哥大都有很长的天线,早期的手机也有突出来的小天线,为什么后来我们就看不到带天线的手机了?
  
  有人说,是因为信号好了,不需要天线了。。。
  其实不对。。。信号再好,也不能没有天线。。。
  更主要的原因是——天线变小了。。。
  根据天线特性,天线长度应与波长成正比,大约在1/10~1/4之间。
  
  频率越高,波长越短,天线也就跟着变短啦!
  毫米波,天线也变成毫米级。。。
  这就意味着,天线完全可以塞进手机的里面,甚至可以塞很多根。。。
  这就是5G的第三大杀手锏——
  Massive MIMO

  MIMO就是“多进多出”(Multiple-Input Multiple-Output),多根天线发送,多根天线接收。
  在LTE时代就已经有MIMO了,5G继续发扬光大,变成了加强版的Massive MIMO(Massive:大规模的,大量的)。
  
  手机都能塞好多根,基站就更不用说了。。。
  ▼以前的基站,天线就那么几根。。。
  
  5G时代,就不是按根来算了,是按“阵”。。。“天线阵列”。。。
  ▼天线多得排成阵了。。。一眼看去一大片的节奏。。。
  
  不过,天线之间的距离也不能太近。
  因为天线特性要求,多天线阵列要求天线之间的距离保持在半个波长以上。
  不要问我为什么,去问科学家。。。
  你是直的?还是弯的?

  大家都见过灯泡发光吧?
  其实,基站发射信号的时候,就有点像灯泡发光。
  信号是向四周发射的,对于光,当然是照亮整个房间,如果只是想照亮某个区域或物体,那么,大部分的光都浪费了。。。
  
  基站也是一样,大量的能量和资源都浪费了。
  我们能不能找到一只无形的手,把散开的光束缚起来呢?
  这样既节约了能量,也保证了要照亮的区域有足够的光。
  答案是:可以。
  这就是——
  波束赋形
  波束赋形

  在基站上布设天线阵列,通过对射频信号相位的控制,使得相互作用后的电磁波的波瓣变得非常狭窄,并指向它所提供服务的手机,而且能跟据手机的移动而转变方向。
  这种空间复用技术,由全向的信号覆盖变为了精准指向性服务,波束之间不会干扰,在相同的空间中提供更多的通信链路,极大地提高基站的服务容量。
  
  直的都能掰成弯的。。。还有什么是通信砖家干不出来的?
  别收我钱,行不行?

  在目前的通信网络中,即使是两个人面对面拨打对方的手机(或手机对传照片),信号都是通过基站进行中转的,包括控制信令和数据包。。。
  而在5G时代,这种情况就不一定了。。。
  5G的第五大特点——D2D,也就是Device to Device。
  D2D

  5G时代,同一基站下的两个用户,如果互相进行通信,他们的数据将不再通过基站转发,而是直接手机到手机。。。
  
  这样,就节约了大量的空中资源,也减轻了基站的压力。
  不过,如果你觉得这样就不用付钱,那你就图样图森破了。。。
  
  控制消息还是要从基站走的,而且用着频谱资源,运营商爸爸怎么可能放过你。。。
  来源公众号:鲜枣课堂(ID:linjoocom)