在STM32中,如果是在MDK下创建一个工程,一般都有提示是否加入Star up Code文件,这个就是启动文件,这里有个误区,一般对于初学者来看,很容易误以为STM32F10x.s这个启动文件是STM32所有类型芯片的通用启动文件,因此也自然不会去理会它的作用,事实上,这个启动文件只是针对部分STM32系列,如果仔细看过它的启动代码就会发现里面很多中断函数定义是没有的,甚至有些和STM32F10x_it.c里的函数是有出路的,如果刚好用到了默认的这个中断服务子函数的话,程序一旦运行到了中断是找不到入口地址的,这样就会莫名其妙地不知问题所在。STM32F10x.s是MDK提供的启动代码,从其里面的内容看来,它只定义了3个串口,4个定时器。实际上STM32的系列产品有5个串口的型号,也只有有2个串口的型号,定时器也是,做多的有8个定时器。比如,如果你用的STM32F103ZET6,而启动文件用的是STM32F10x.s的话,你可以正常使用串口1~3的中断,而串口4和5的中断,则无法正常使用。所以STM32F10x.s并不能适用所有的STM32型号,对于不同型号的STM32,正确做法是选择不同的启动文件。ST公司提供了3个启动文件:
startup_stm32f10x_ld.s
startup_stm32f10x_md.s
startup_stm32f10x_hd.s
分别适用于小容量/中容量/大容量的STM32芯片,具体判断方法如下:
小容量:FLASH≤32K
中容量:64K≤FLASH≤128K
大容量:256K≤FLASH
在启动代码中,补充几点:
启动代码中的两条语句解释:
一、PROC 为子程序开始,ENDP 为子程序结束
二、[weak] 的意思是该函数优先级比较弱,如果其它地方定义了一个同名函数,那么此处的这个函数就被取代了。语法格式为 EXPORT 标号 {[WEAK]} 。EXPORT 可用GLOBAL代替。
对于_main函数的理解:
事实上,_main 和main是两个完全不同的函数!_main代码是编译器自动创建的,因此无法找到_main代码。MDK文档中有一句说明:it is automatically craated by the linker when it sees a definition of main() .大体意思可以理解为:当编译器发现定义了main函数,那么就会自动创建_main.
_main 和main的关系
_main 主要做两件事:其一,C所需的资源;其二,调用main函数。这就不难理解为什么在启动代码调用的是_main ,最后却能转到main函数中去执行的原因了。
AREA指令的理解
AREA指令是一个伪指令,用于段定义。ARM汇编程序由段组成,段是相对独立的指令或数据单位,每个段由AREA伪指令定义,并定义段的属性。
AREA参数说明:
* STACK——AREA指令的一个参数,定义段名称
* NOINIT——AREA指令的一个参数,指定本数据段仅仅保留了内在单元,而将句初始值写入内存单元,此时内存单元值初始化为0
* READWRITE——指定本段为可读可写,数据段默认为READWRITE.
READWRITE(读写)、READONLY(只读)
* ALIGN——也是一个伪指令,指定对齐方式。ALIGN n 指令的对齐值有两种选择:n或者2^n
例子:开辟一个堆栈段,段名为STACK,定义为可读可写,将内存单元初始化为0,对齐方式为8字节对齐。
AREA STACK,NOINIT,READWRITE,ALIGN=3
相对于ARM上一代的主流ARM7/ARM9内核架构,新一代Cortex内核架构的启动方式有了比较大的变化。ARM7/ARM9内核的控制器在复位后,CPU会从存储空间的绝对地址0x000000取出第一条指令执行复位中断服务程序的方式启动,即固定了复位后的起始地址为0x000000(PC = 0x000000)同时中断向量表的位置并不是固定的。而Cortex-M3内核则正好相反,有3种情况:
1、 通过boot引脚设置可以将中断向量表定位于SRAM区,即起始地址为0x2000000,同时复位后PC指针位于0x2000000处;
2、 通过boot引脚设置可以将中断向量表定位于FLASH区,即起始地址为0x8000000,同时复位后PC指针位于0x8000000处;
3、 通过boot引脚设置可以将中断向量表定位于内置Bootloader区,本文不对这种情况做论述;
而Cortex-M3内核规定,起始地址必须存放堆顶指针,而第二个地址则必须存放复位中断入口向量地址,这样在Cortex-M3内核复位后,会自动从起始地址的下一个32位空间取出复位中断入口向量,跳转执行复位中断服务程序。对比ARM7/ARM9内核,Cortex-M3内核则是固定了中断向量表的位置而起始地址是可变化的。
有了上述准备只是后,下面以STM32的2.02固件库提供的启动文件“stm32f10x_vector.s”为模板,对STM32的启动过程做一个简要而全面的解析。
程序清单一:
文件“stm32f10x_vector.s”,其中注释为行号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | DATA_IN_ExtSRAM EQU 0 ;1 Stack_Size EQU 0x00000400 ;2 AREA STACK, NOINIT, READWRITE, ALIGN = 3 ;3 Stack_Mem SPACE Stack_Size ;4 __initial_sp ;5 Heap_Size EQU 0x00000400 ;6 AREA HEAP, NOINIT, READWRITE, ALIGN = 3 ;7 __heap_base ;8 Heap_Mem SPACE Heap_Size ;9 __heap_limit ;10 THUMB ;11 PRESERVE8 ;12 IMPORT NMIException ;13 IMPORT HardFaultException ;14 IMPORT MemManageException ;15 IMPORT BusFaultException ;16 IMPORT UsageFaultException ;17 IMPORT SVCHandler ;18 IMPORT DebugMonitor ;19 IMPORT PendSVC ;20 IMPORT SysTickHandler ;21 IMPORT WWDG_IRQHandler ;22 IMPORT PVD_IRQHandler ;23 IMPORT TAMPER_IRQHandler ;24 IMPORT RTC_IRQHandler ;25 IMPORT FLASH_IRQHandler ;26 IMPORT RCC_IRQHandler ;27 IMPORT EXTI0_IRQHandler ;28 IMPORT EXTI1_IRQHandler ;29 IMPORT EXTI2_IRQHandler ;30 IMPORT EXTI3_IRQHandler ;31 IMPORT EXTI4_IRQHandler ;32 IMPORT DMA1_Channel1_IRQHandler ;33 IMPORT DMA1_Channel2_IRQHandler ;34 IMPORT DMA1_Channel3_IRQHandler ;35 IMPORT DMA1_Channel4_IRQHandler ;36 IMPORT DMA1_Channel5_IRQHandler ;37 IMPORT DMA1_Channel6_IRQHandler ;38 IMPORT DMA1_Channel7_IRQHandler ;39 IMPORT ADC1_2_IRQHandler ;40 IMPORT USB_HP_CAN_TX_IRQHandler ;41 IMPORT USB_LP_CAN_RX0_IRQHandler ;42 IMPORT CAN_RX1_IRQHandler ;43 IMPORT CAN_SCE_IRQHandler ;44 IMPORT EXTI9_5_IRQHandler ;45 IMPORT TIM1_BRK_IRQHandler ;46 IMPORT TIM1_UP_IRQHandler ;47 IMPORT TIM1_TRG_COM_IRQHandler ;48 IMPORT TIM1_CC_IRQHandler ;49 IMPORT TIM2_IRQHandler ;50 IMPORT TIM3_IRQHandler ;51 IMPORT TIM4_IRQHandler ;52 IMPORT I2C1_EV_IRQHandler ;53 IMPORT I2C1_ER_IRQHandler ;54 IMPORT I2C2_EV_IRQHandler ;55 IMPORT I2C2_ER_IRQHandler ;56 IMPORT SPI1_IRQHandler ;57 IMPORT SPI2_IRQHandler ;58 IMPORT USART1_IRQHandler ;59 IMPORT USART2_IRQHandler ;60 IMPORT USART3_IRQHandler ;61 IMPORT EXTI15_10_IRQHandler ;62 IMPORT RTCAlarm_IRQHandler ;63 IMPORT USBWakeUp_IRQHandler ;64 IMPORT TIM8_BRK_IRQHandler ;65 IMPORT TIM8_UP_IRQHandler ;66 IMPORT TIM8_TRG_COM_IRQHandler ;67 IMPORT TIM8_CC_IRQHandler ;68 IMPORT ADC3_IRQHandler ;69 IMPORT FSMC_IRQHandler ;70 IMPORT SDIO_IRQHandler ;71 IMPORT TIM5_IRQHandler ;72 IMPORT SPI3_IRQHandler ;73 IMPORT UART4_IRQHandler ;74 IMPORT UART5_IRQHandler ;75 IMPORT TIM6_IRQHandler ;76 IMPORT TIM7_IRQHandler ;77 IMPORT DMA2_Channel1_IRQHandler ;78 IMPORT DMA2_Channel2_IRQHandler ;79 IMPORT DMA2_Channel3_IRQHandler ;80 IMPORT DMA2_Channel4_5_IRQHandler ;81 AREA RESET, DATA, READONLY ;82 EXPORT __Vectors ;83 __Vectors ;84 DCD __initial_sp ;85 DCD Reset_Handler ;86 DCD NMIException ;87 DCD HardFaultException ;88 DCD MemManageException ;89 DCD BusFaultException ;90 DCD UsageFaultException ;91 DCD 0 ;92 DCD 0 ;93 DCD 0 ;94 DCD 0 ;95 DCD SVCHandler ;96 DCD DebugMonitor ;97 DCD 0 ;98 DCD PendSVC ;99 DCD SysTickHandler ;100 DCD WWDG_IRQHandler ;101 DCD PVD_IRQHandler ;102 DCD TAMPER_IRQHandler ;103 DCD RTC_IRQHandler ;104 DCD FLASH_IRQHandler ;105 DCD RCC_IRQHandler ;106 DCD EXTI0_IRQHandler ;107 DCD EXTI1_IRQHandler ;108 DCD EXTI2_IRQHandler ;109 DCD EXTI3_IRQHandler ;110 DCD EXTI4_IRQHandler ;111 DCD DMA1_Channel1_IRQHandler ;112 DCD DMA1_Channel2_IRQHandler ;113 DCD DMA1_Channel3_IRQHandler ;114 DCD DMA1_Channel4_IRQHandler ;115 DCD DMA1_Channel5_IRQHandler ;116 DCD DMA1_Channel6_IRQHandler ;117 DCD DMA1_Channel7_IRQHandler ;118 DCD ADC1_2_IRQHandler ;119 DCD USB_HP_CAN_TX_IRQHandler ;120 DCD USB_LP_CAN_RX0_IRQHandler ;121 DCD CAN_RX1_IRQHandler ;122 DCD CAN_SCE_IRQHandler ;123 DCD EXTI9_5_IRQHandler ;124 DCD TIM1_BRK_IRQHandler ;125 DCD TIM1_UP_IRQHandler ;126 DCD TIM1_TRG_COM_IRQHandler ;127 DCD TIM1_CC_IRQHandler ;128 DCD TIM2_IRQHandler ;129 DCD TIM3_IRQHandler ;130 DCD TIM4_IRQHandler ;131 DCD I2C1_EV_IRQHandler ;132 DCD I2C1_ER_IRQHandler ;133 DCD I2C2_EV_IRQHandler ;134 DCD I2C2_ER_IRQHandler ;135 DCD SPI1_IRQHandler ;136 DCD SPI2_IRQHandler ;137 DCD USART1_IRQHandler ;138 DCD USART2_IRQHandler ;139 DCD USART3_IRQHandler ;140 DCD EXTI15_10_IRQHandler ;141 DCD RTCAlarm_IRQHandler ;142 DCD USBWakeUp_IRQHandler ;143 DCD TIM8_BRK_IRQHandler ;144 DCD TIM8_UP_IRQHandler ;145 DCD TIM8_TRG_COM_IRQHandler ;146 DCD TIM8_CC_IRQHandler ;147 DCD ADC3_IRQHandler ;148 DCD FSMC_IRQHandler ;149 DCD SDIO_IRQHandler ;150 DCD TIM5_IRQHandler ;151 DCD SPI3_IRQHandler ;152 DCD UART4_IRQHandler ;153 DCD UART5_IRQHandler ;154 DCD TIM6_IRQHandler ;155 DCD TIM7_IRQHandler ;156 DCD DMA2_Channel1_IRQHandler ;157 DCD DMA2_Channel2_IRQHandler ;158 DCD DMA2_Channel3_IRQHandler ;159 DCD DMA2_Channel4_5_IRQHandler ;160 AREA |.text|, CODE, READONLY ;161 Reset_Handler PROC ;162 EXPORT Reset_Handler ;163 IF DATA_IN_ExtSRAM == 1 ;164 LDR R0,= 0x00000114 ;165 LDR R1,= 0x40021014 ;166 STR R0,[R1] ;167 LDR R0,= 0x000001E0 ;168 LDR R1,= 0x40021018 ;169 STR R0,[R1] ;170 LDR R0,= 0x44BB44BB ;171 LDR R1,= 0x40011400 ;172 STR R0,[R1] ;173 LDR R0,= 0xBBBBBBBB ;174 LDR R1,= 0x40011404 ;175 STR R0,[R1] ;176 LDR R0,= 0xB44444BB ;177 LDR R1,= 0x40011800 ;178 STR R0,[R1] ;179 LDR R0,= 0xBBBBBBBB ;180 LDR R1,= 0x40011804 ;181 STR R0,[R1] ;182 LDR R0,= 0x44BBBBBB ;183 LDR R1,= 0x40011C00 ;184 STR R0,[R1] ;185 LDR R0,= 0xBBBB4444 ;186 LDR R1,= 0x40011C04 ;187 STR R0,[R1] ;188 LDR R0,= 0x44BBBBBB ;189 LDR R1,= 0x40012000 ;190 STR R0,[R1] ;191 LDR R0,= 0x44444B44 ;192 LDR R1,= 0x40012004 ;193 STR R0,[R1] ;194 LDR R0,= 0x00001011 ;195 LDR R1,= 0xA0000010 ;196 STR R0,[R1] ;197 LDR R0,= 0x00000200 ;198 LDR R1,= 0xA0000014 ;199 STR R0,[R1] ;200 ENDIF ;201 IMPORT __main ;202 LDR R0, =__main ;203 BX R0 ;204 ENDP ;205 ALIGN ;206 IF : DEF:__MICROLIB ;207 EXPORT __initial_sp ;208 EXPORT __heap_base ;209 EXPORT __heap_limit ;210 ELSE ;211 IMPORT __use_two_region_memory ;212 EXPORT __user_initial_stackheap ;213 __user_initial_stackheap ;214 LDR R0, = Heap_Mem ;215 LDR R1, = (Stack_Mem + Stack_Size) ;216 LDR R2, = (Heap_Mem + Heap_Size) ;217 LDR R3, = Stack_Mem ;218 BX LR ;219 ALIGN ;220 ENDIF ;221 END ;222 ENDIF ;223 END ;224 |
如程序清单一,STM32的启动代码一共224行,使用了汇编语言编写,这其中的主要原因下文将会给出交代。现在从第一行开始分析:
第1行:定义是否使用外部SRAM,为1则使用,为0则表示不使用。此语行若用C语言表达则等价于:
#define DATA_IN_ExtSRAM 0
第2行:定义栈空间大小为0x00000400个字节,即1Kbyte。此语行亦等价于:
#define Stack_Size 0x00000400
第3行:伪指令AREA,表示
第4行:开辟一段大小为Stack_Size的内存空间作为栈。
第5行:标号__initial_sp,表示栈空间顶地址。
第6行:定义堆空间大小为0x00000400个字节,也为1Kbyte。
第7行:伪指令AREA,表示
第8行:标号__heap_base,表示堆空间起始地址。
第9行:开辟一段大小为Heap_Size的内存空间作为堆。
第10行:标号__heap_limit,表示堆空间结束地址。
第11行:告诉编译器使用THUMB指令集。
第12行:告诉编译器以8字节对齐。
第13—81行:IMPORT指令,指示后续符号是在外部文件定义的(类似C语言中的全局变量声明),而下文可能会使用到这些符号。
第82行:定义只读数据段,实际上是在CODE区(假设STM32从FLASH启动,则此中断向量表起始地址即为0x8000000)
第83行:将标号__Vectors声明为全局标号,这样外部文件就可以使用这个标号。
第84行:标号__Vectors,表示中断向量表入口地址。
第85—160行:建立中断向量表。
第161行:
第162行:复位中断服务程序,PROC…ENDP结构表示程序的开始和结束。
第163行:声明复位中断向量Reset_Handler为全局属性,这样外部文件就可以调用此复位中断服务。
第164行:IF…ENDIF为预编译结构,判断是否使用外部SRAM,在第1行中已定义为“不使用”。
第165—201行:此部分代码的作用是设置FSMC总线以支持SRAM,因不使用外部SRAM因此此部分代码不会被编译。
第202行:声明__main标号。
第203—204行:跳转__main地址执行。
第207行:IF…ELSE…ENDIF结构,判断是否使用DEF:__MICROLIB(此处为不使用)。
第208—210行:若使用DEF:__MICROLIB,则将__initial_sp,__heap_base,__heap_limit亦即栈顶地址,堆始末地址赋予全局属性,使外部程序可以使用。
第212行:定义全局标号__use_two_region_memory。
第213行:声明全局标号__user_initial_stackheap,这样外程序也可调用此标号。
第214行:标号__user_initial_stackheap,表示用户堆栈初始化程序入口。
第215—218行:分别保存栈顶指针和栈大小,堆始地址和堆大小至R0,R1,R2,R3寄存器。
第224行:程序完毕。
以上便是STM32的启动代码的完整解析,接下来对几个小地方做解释:
1、 AREA指令:伪指令,用于定义代码段或数据段,后跟属性标号。其中比较重要的一个标号为“READONLY”或者“READWRITE”,其中“READONLY”表示该段为只读属性,联系到STM32的内部存储介质,可知具有只读属性的段保存于FLASH区,即0x8000000地址后。而“READWRITE”表示该段为“可读写”属性,可知“可读写”段保存于SRAM区,即0x2000000地址后。由此可以从第3、7行代码知道,堆栈段位于SRAM空间。从第82行可知,中断向量表放置与FLASH区,而这也是整片启动代码中最先被放进FLASH区的数据。因此可以得到一条重要的信息:0x8000000地址存放的是栈顶地址__initial_sp,0x8000004地址存放的是复位中断向量Reset_Handler(STM32使用32位总线,因此存储空间为4字节对齐)。
2、 DCD指令:作用是开辟一段空间,其意义等价于C语言中的地址符“&”。因此从第84行开始建立的中断向量表则类似于使用C语言定义了一个指针数组,其每一个成员都是一个函数指针,分别指向各个中断服务函数。
3、 标号:前文多处使用了“标号”一词。标号主要用于表示一片内存空间的某个位置,等价于C语言中的“地址”概念。地址仅仅表示存储空间的一个位置,从C语言的角度来看,变量的地址,数组的地址或是函数的入口地址在本质上并无区别。
4、 第202行中的__main标号并不表示C程序中的main函数入口地址,因此第204行也并不是跳转至main函数开始执行C程序。__main标号表示C/C++标准实时库函数里的一个初始化子程序__main的入口地址。该程序的一个主要作用是初始化堆栈(对于程序清单一来说则是跳转__user_initial_stackheap标号进行初始化堆栈的),并初始化映像文件,最后跳转C程序中的main函数。这就解释了为何所有的C程序必须有一个main函数作为程序的起点——因为这是由C/C++标准实时库所规定的——并且不能更改,因为C/C++标准实时库并不对外界开放源代码。因此,实际上在用户可见的前提下,程序在第204行后就跳转至.c文件中的main函数,开始执行C程序了。
至此可以总结一下STM32的启动文件和启动过程。首先对栈和堆的大小进行定义,并在代码区的起始处建立中断向量表,其第一个表项是栈顶地址,第二个表项是复位中断服务入口地址。然后在复位中断服务程序中跳转;C/C++标准实时库的__main函数,完成用户堆栈等的初始化后,跳转.c文件中的main函数开始执行C程序。假设STM32被设置为从内部FLASH启动(这也是最常见的一种情况),中断向量表起始地位为0x8000000,则栈顶地址存放于0x8000000处,而复位中断服务入口地址存放于0x8000004处。当STM32遇到复位信号后,则从0x80000004处取出复位中断服务入口地址,继而执行复位中断服务程序,然后跳转__main函数,最后进入mian函数,来到C的世界。