所以当客户没有特殊要求时, PCB 外形是直角一般会默认倒角 0.5mm 圆角(如下图所示)
一. PCB 板边倒圆角点分析
原 PCB 外形 如下图图示: 看了这个 PCB 外形, 产生有 2 个问题点.
1. 外形中哪些点需倒圆角?
2. 如何怎么倒圆角?
1. 外形中哪些点需倒圆角?
看下图: PCB 外形倒圆角的点, 刚好就是我们凸包需求出的点, 接下来我们将玩转凸包了, 只要求出凸包, 那么就可以实现 PCB 板边倒圆角啦.
求凸包的算法: 我们可以借鉴算法导论中的查找凸包的算法(加以改进得到新的求凸包方法, 详见[方法一] 与[方法二] )
2. 如何怎么倒圆角?
在下面有说明倒角方法.
二. 求凸点
方法一求凸点:[采用多轮遍历, 一遍一遍将凹点踢除, 剩于的即是凸点]
方法一求凸点: 代码
- /// <summary>
- /// 求最大多边形最大凸包 1 [采用多轮遍历将凹点踢除, 剩于的即是凸点]
- /// </summary>
- /// <param name="gSur_Point_list"></param>
- /// <returns></returns>
- public List<gSur_Point> s_convex_polyon1(List<gSur_Point> gSur_Point_list)
- {
- add addCOM = new add();
- bool isOK = true;
- List<gSur_Point> PointList = new List<gSur_Point>();
- var isCCW = s_isCCW(gSur_Point_list);
- int sum = gSur_Point_list.Count() - 1;
- int n = gSur_Point_list.Count();
- for (int i = 0; i <n; i++)
- {
- int IndexPre = (i - 1) % sum;
- if (IndexPre == -1) IndexPre = sum - 1;
- int IndexCurrent = i % sum;
- int IndexNext = (i + 1) % sum;
- if (gSur_Point_list[IndexPre].type_point> 0) continue;
- if (gSur_Point_list[IndexCurrent].type_point> 0) continue;
- var multiVal = multi(gSur_Point_list[IndexPre].p, gSur_Point_list[IndexCurrent].p, gSur_Point_list[IndexNext].p);
- if ((isCCW && multiVal> 0) || (!isCCW && multiVal <0))
- PointList.Add(gSur_Point_list[IndexCurrent]);
- else
- isOK = false;
- }
- List<gSur_Point> Point2List = new List<gSur_Point>(PointList);
- while (!isOK)
- {
- isOK = true;
- PointList.Clear();
- PointList.AddRange(Point2List);
- Point2List.Clear();
- sum = PointList.Count() - 1;
- n = PointList.Count();
- for (int i = 0; i <n; i++)
- {
- int IndexPre = (i - 1) % sum;
- if (IndexPre == -1) IndexPre = sum - 1;
- int IndexCurrent = i % sum;
- int IndexNext = (i + 1) % sum;
- var multiVal = multi(PointList[IndexPre].p, PointList[IndexCurrent].p, PointList[IndexNext].p);
- if ((isCCW && multiVal> 0) || (!isCCW && multiVal <0))
- Point2List.Add(PointList[IndexCurrent]);
- else
- isOK = false;
- }
- }
- return Point2List;
- }
方法二求凸包代码:
- /// <summary>
- /// 求最大多边形最大凸包 2 [采用一边遍历找出凸点并加入队列, 并同时将队列中的凸点队列中找出凹点踢除]
- /// </summary>
- /// <param name="gSur_Point_list"></param>
- /// <returns></returns>
- public List<gSur_Point> s_convex_polyon2(List<gSur_Point> gSur_Point_list)
- {
- Stack<gSur_Point> StackPoint = new Stack<gSur_Point>();
- var isCCW = s_isCCW(gSur_Point_list);
- int sum = gSur_Point_list.Count() - 1;
- int n = gSur_Point_list.Count();
- for (int i = 0; i <n; i++)
- {
- int IndexPre = (i - 1) % sum;
- if (IndexPre == -1) IndexPre = sum - 1;
- int IndexCurrent = i % sum;
- int IndexNext = (i + 1) % sum;
- if (gSur_Point_list[IndexPre].type_point> 0) continue;
- if (gSur_Point_list[IndexCurrent].type_point> 0) continue;
- var multiVal = multi(gSur_Point_list[IndexPre].p, gSur_Point_list[IndexCurrent].p, gSur_Point_list[IndexNext].p);
- if ((isCCW && multiVal> 0) || (!isCCW && multiVal <0))
- {
- L1:
- if (StackPoint.Count> 1)
- {
- var Top1Point = StackPoint.Pop();
- var Top2Point = StackPoint.Peek();
- multiVal = multi(Top2Point.p, Top1Point.p, gSur_Point_list[IndexCurrent].p);
- if ((isCCW && multiVal> 0) || (!isCCW && multiVal <0))
- StackPoint.Push(Top1Point);
- else
- goto L1;
- }
- StackPoint.Push(gSur_Point_list[IndexCurrent]);
- }
- }
- return StackPoint.Reverse().ToList();
- }
方法三求凸包代码
- /// <summary>
- /// 求最大多边形最大凸包 5 [按算法导论 Graham 扫描法 各节点按方位角 + 距离 逆时针排序 依次检查, 当不属凸点于则弹出]
- /// 由于把各点的排列顺序重新排序了, 只支持折线节点(当存在弧节点时会出异常 !!!)
- /// </summary>
- /// <param name="gSur_Point_list"></param>
- /// <returns></returns>
- public List<gSur_Point> s_convex_polyon3(List<gSur_Point> gSur_Point_list)
- {
- var LeftBottomPoint = gSur_Point_list.OrderBy(tt => tt.p.y).ThenBy(tt => tt.p.x).FirstOrDefault();
- gSur_Point_list.RemoveAt(gSur_Point_list.Count - 1);
- gSur_Point_list.ForEach(tt =>
- {
- tt.Value = p2p_di(LeftBottomPoint.p, tt.p);
- tt.Angle = p_ang(LeftBottomPoint.p, tt.p);
- }
- );
- gSur_Point_list = gSur_Point_list.OrderBy(tt => tt.Angle).ThenBy(tt => tt.Value).ToList();
- gSur_Point_list.Add(gSur_Point_list[0]);
- Stack<gSur_Point> StackPoint = new Stack<gSur_Point>();
- var isCCW = true;
- int sum = gSur_Point_list.Count() - 1;
- int n = gSur_Point_list.Count();
- for (int i = 0; i <n; i++)
- {
- int IndexPre = (i - 1) % sum;
- if (IndexPre == -1) IndexPre = sum - 1;
- int IndexCurrent = i % sum;
- int IndexNext = (i + 1) % sum;
- var multiVal = multi(gSur_Point_list[IndexPre].p, gSur_Point_list[IndexCurrent].p, gSur_Point_list[IndexNext].p);
- if (isCCW && multiVal> 0)
- {
- L1:
- if (StackPoint.Count> 1)
- {
- var Top1Point = StackPoint.Pop();
- var Top2Point = StackPoint.Peek();
- multiVal = multi(Top2Point.p, Top1Point.p, gSur_Point_list[IndexCurrent].p);
- if (isCCW && multiVal> 0)
- StackPoint.Push(Top1Point);
- else
- goto L1;
- }
- StackPoint.Push(gSur_Point_list[IndexCurrent]);
- }
- }
- return StackPoint.Reverse().ToList();
- }
- /// <summary>
- /// Surface 坐标泛型集类 1
- /// </summary>
- public class gSur_Point
- {
- public gSur_Point()
- { }
- public gSur_Point(double x_val, double y_val, byte type_point_)
- {
- this.p.x = x_val;
- this.p.y = y_val;
- this.type_point = type_point_;
- }
- public gSur_Point(gPoint p, byte type_point_)
- {
- this.p = p;
- this.type_point = type_point_;
- }
- public gPoint p;
- /// <summary>
- /// 0 为折点 1 为顺时针 2 为逆时针
- /// </summary>
- public byte type_point { get; set; } = 0;
- /// <summary>
- /// 值
- /// </summary>
- public double Value { get; set; } = 0;
- /// <summary>
- /// 角度
- /// </summary>
- public double Angle { get; set; } = 0;
- /// <summary>
- /// 标记
- /// </summary>
- public bool isFalg { get; set; }
- }
- /// <summary>
- /// 点 数据类型 (XY)
- /// </summary>
- public struct gPoint
- {
- public gPoint(gPoint p_)
- {
- this.x = p_.x;
- this.y = p_.y;
- }
- public gPoint(double x_val, double y_val)
- {
- this.x = x_val;
- this.y = y_val;
- }
- public double x;
- public double y;
- public static gPoint operator +(gPoint p1, gPoint p2)
- {
- p1.x += p2.x;
- p1.y += p2.y;
- return p1;
- }
- public static gPoint operator -(gPoint p1, gPoint p2)
- {
- p1.x -= p2.x;
- p1.y -= p2.y;
- return p1;
- }
- public static gPoint operator +(gPoint p1, double val)
- {
- p1.x += val;
- p1.y += val;
- return p1;
- }
- public static bool operator ==(gPoint p1, gPoint p2)
- {
- return (p1.x == p2.x && p1.y == p2.y);
- }
- public static bool operator !=(gPoint p1, gPoint p2)
- {
- return !(p1.x == p2.x && p1.y == p2.y);
- }
- }
- /// <summary>
- /// 求叉积 判断[点 P 与线 L] 位置关系[小于 0] 在右边 [大于 0] 在左边 [等于 0] 共线
- /// </summary>
- /// <param name="ps"></param>
- /// <param name="pe"></param>
- /// <param name="p"></param>
- /// <returns>[小于 0] 在右边 [大于 0] 在左边 [等于 0] 共线</returns>
- public double multi(gPoint ps, gPoint pe, gPoint p)
- {
- return ((ps.x - p.x) * (pe.y - p.y) - (pe.x - p.x) * (ps.y - p.y));
- }
- /// <summary>
- /// 检测 Surface 是否逆时针
- /// </summary>
- /// <param name="gSur_Point_list"></param>
- /// <returns></returns>
- public bool s_isCCW(List<gSur_Point> gSur_Point_list)
- {
- double d = 0;
- int n = gSur_Point_list.Count() - 1;
- for (int i = 0; i <n; i++)
- {
- if (gSur_Point_list.type_point> 0) continue;
- int NextI = i + 1 + (gSur_Point_list[i + 1].type_point> 0 ? 1 : 0);
- d += -0.5 * (gSur_Point_list[NextI].p.y + gSur_Point_list.p.y) * (gSur_Point_list[NextI].p.x - gSur_Point_list.p.x);
- }
- return d> 0;
- }
- /// <summary>
- /// 返回两点之间欧氏距离
- /// </summary>
- /// <param name="p1"></param>
- /// <param name="p2"></param>
- /// <returns></returns>
- public double p2p_di(gPoint p1, gPoint p2)
- {
- return Math.Sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
- }
- /// <summary>
- /// 求方位角
- /// </summary>
- /// <param name="ps"></param>
- /// <param name="pe"></param>
- /// <returns></returns>
- public double p_ang(gPoint ps, gPoint pe)
- {
- double a_ang = Math.Atan((pe.y - ps.y) / (pe.x - ps.x)) / Math.PI * 180;
- // 象限角 转方位角 计算所属象限 并求得方位角
- if (pe.x>= ps.x && pe.y>= ps.y) //↗ 第一象限
- {
- return a_ang;
- }
- else if (!(pe.x>= ps.x) && pe.y>= ps.y) // ↖ 第二象限
- {
- return a_ang + 180;
- }
- else if (!(pe.x>= ps.x) && !(pe.y>= ps.y)) //↙ 第三象限
- {
- return a_ang + 180;
- }
- else if (pe.x>= ps.x && !(pe.y>= ps.y)) // ↘ 第四象限
- {
- return a_ang + 360;
- }
- else
- {
- return a_ang;
- }
- }
- View Code
- int NextI = i + 1 + (gSur_Point_list[i + 1].type_point> 0 ? 1 : 0);
方法一. 也最简单的倒角方法, 我们将 PCB 板边凸点找出来后, 可以直接借助 genesis 倒角功能就可以实现了
当然但偶尔会报错的, 且当 N 个小线段组成的尖角倒角会出错(要实现完美效果只有自己写倒角算法啦)
方法二: 自己写倒角算法, 这个算法和加内角孔算法类似 (这里只是介绍简单的倒角) 考虑特殊的需要扩展
可以参考这篇文章: https://www.cnblogs.com/pcbren/p/9665304.html
四. 凸点加倒圆角实现效果
来源: https://www.cnblogs.com/pcbren/p/11141062.html