一、前言:
系统级封装(system in package,SIP)是指将不同种类的元件,通过不同种技术,混载于同一封装体内,由此构成系统集成封装形式。该定义是通过不断演变、逐渐形成的。开始是单芯片封装体中加入无源元件(此时封装形式多为QFP、SOP等),再到单个封装体中加入多个芯片。叠层芯片以及无源器件,最后发展到一个封装构成一个系统(此时的封装形式多为BGA、CSP)。SIP是MCP进一步发展的产物,二者的区别在于:SIP中可搭载不同类型的芯片,芯片之间可以进行信号取放和交换,从而以一个系统的规模而具备某种功能;MCP中叠层的多个芯片一般为同一种类型,以芯片之间不能进行信号存取和交换的存储器为主,从整体上来说为一多芯片存储器。
二、SIP封装综述:
实现电子整机系统的功能通常有两个途径:一种是系统级芯片,减成SOC,即在单一的芯片上实现电子整机系统的功能;另一种是系统级封装,减成SIP,即通过封装来实现整机系统的功能。从学术上讲,这是两条技术路线,就像单片集成电路和混合集成电路一样,各有各的优势,各有各的应用市场,在技术上和应用上都是香菇补充的关系。从产品上分,SOC应主要用于周期直角厂的高性能产品,而SIP主要应用于周期短的消费类产品。SIP是使用成熟的组装和互连技术,把各种集成电路如CMOS电路、GaAs电路、SiGe电路或者光电子器件、MEMS器件以及各类无源器件元件如电容、电感等集成到一个封装体内,实现整机系统的功能。主要优点包括:
-采用现有商用元器件,制造成本较低;
-产品进入市场的周期短;
-无论设计和工艺,有较大的灵活性;
-把不同类型的电路和元件集成在一起,相对容易实现。
系统级封装(SIP)技术从20世纪90年代初提出到现在,经过十几年的发展,已经能被学术界和工业界广泛接受,成为电子技术研究新热点和技术应用的主要方向之一,并认为他代表了今后电子技术发展的方向之一。
三、SIP封装类型:
从目前业界SIP的设计类型和结构区分,SIP可分为三类。
3.1 2D SIP
此类封装是在同一个封装基板上将芯片一个挨一个的排列以二维的模式封装在一个封装体内。
3.2 堆叠SIP
此类封装是在一个封装中采用物理的方法将两个或多个芯片堆叠整合起来进行封装。
3.3 3D SIP
此类封装是在2D封装的基础上,把多个罗芯片、封装芯片、多芯片甚至圆片进行叠层互联,构成立体封装,这种结构也称作叠层型3D封装。
四、SIP封装的制程工艺:
SIP封装制程按照芯片与基板的连接方式可分为引线键合封装和倒装焊两种。
4.1引线键合封装工艺
圆片→圆片减薄→圆片切割→芯片粘结→引线键合→等离子清洗→液态密封剂灌封→装配焊料球→回流焊→表面打标→分离→最终检查→测试→包装。
4.1.1圆片减薄
圆片减薄是指从圆片背面采用机械或化学机械(CMP)方式进行研磨,将圆片减薄到适合封装的程度。由于圆片的尺寸越来越大,为了增加圆片的机械强度,防止在加工过程中发生变形、开裂,其厚度也一直在增加。但是随着系统朝轻薄短小的方向发展,芯片封装后模块的厚度变得越来越薄,因此在封装之前一定要将圆片的厚度减薄到可以接受的程度,以满足芯片装配的要求。
4.1.2圆片切割
圆片减薄后,可以进行划片。较老式的划片机是手动操作的,现在一般的划片机都已实现全自动化。无论是部分划线还是完全分割硅片,目前均采用锯刀,因为它划出的边缘整齐,很少有碎屑和裂口产生。
4.1.3芯片粘结
已切割下来的芯片要贴装到框架的中间焊盘上。焊盘的尺寸要和芯片大小相匹配,若焊盘尺寸太大,则会导致引线跨度太大,在转移成型过程中会由于流动产生的应力而造成引线弯曲及芯片位移现象。贴装的方式可以是用软焊料(指 Pb-Sn 合金,尤其是含 Sn 的合金)、Au-Si 低共熔合金等焊接到基板上,在塑料封装中最常用的方法是使用聚合物粘结剂粘贴到金属框架上。
4.1.4引线键合
在塑料封装中使用的引线主要是金线,其直径一般为0.025mm~0.032mm。引线的长度常在1.5mm~3mm之间,而弧圈的高度可比芯片所在平面高 0.75mm。
键合技术有热压焊、热超声焊等。这些技术优点是容易形成球形(即焊球技术),并防止金线氧化。为了降低成本,也在研究用其他金属丝,如铝、铜、银、钯等来替代金丝键合。热压焊的条件是两种金属表面紧紧接触,控制时间、温度、压力,使得两种金属发生连接。表面粗糙(不平整)、有氧化层形成或是有化学沾污、吸潮等都会影响到键合效果,降低键合强度。热压焊的温度在 300℃~400℃,时间一般为 40ms(通常,加上寻找键合位置等程序,键合速度是每秒二线)。超声焊的优点是可避免高温,因为它用20kHz~60kHz的超声振动提供焊接所需的能量,所以焊接温度可以降低一些。将热和超声能量同时用于键合,就是所谓的热超声焊。与热压焊相比,热超声焊最大的优点是将键合温度从 350℃降到250℃左右(也有人认为可以用100℃~150℃的条件),这可以大大降低在铝焊盘上形成 Au-Al 金属间化合物的可能性,延长器件寿命,同时降低了电路参数的漂移。在引线键合方面的改进主要是因为需要越来越薄的封装,有些超薄封装的厚度仅有0.4mm 左右。所以引线环(loop)从一般的200 μ m~300 μ m减小到100μm~125μm,这样引线张力就很大,绷得很紧。另外,在基片上的引线焊盘外围通常有两条环状电源 / 地线,键合时要防止金线与其短路,其最小间隙必须>625 μ m,要求键合引线必须具有高的线性度和良好的弧形。
4.1.5等离子清洗
清洗的重要作用之一是提高膜的附着力,如在Si 衬底上沉积 Au 膜,经 Ar 等离子体处理掉表面的碳氢化合物和其他污染物,明显改善了Au 的附着力。等离子体处理后的基体表面,会留下一层含氟化物的灰色物质,可用溶液去掉。同时清洗也有利于改善表面黏着性和润湿性。
4.1.6液态密封剂灌封
将已贴装好芯片并完成引线键合的框架带置于模具中,将塑封料的预成型块在预热炉中加热(预热温度在 90℃~95℃之间),然后放进转移成型机的转移罐中。在转移成型活塞的压力之下,塑封料被挤压到浇道中,并经过浇口注入模腔(在整个过程中,模具温度保持在 170℃~175℃左右)。塑封料在模具中快速固化,经过一段时间的保压,使得模块达到一定的硬度,然后用顶杆顶出模块,成型过程就完成了。对于大多数塑封料来说,在模具中保压几分钟后,模块的硬度足可以达到允许顶出的程度,但是聚合物的固化(聚合)并未全部完成。由于材料的聚合度(固化程度)强烈影响材料的玻璃化转变温度及热应力,所以促使材料全部固化以达到一个稳定的状态,对于提高器件可靠性是十分重要的,后固化就是为了提高塑封料的聚合度而必需的工艺步骤,一般后固化条件为 170℃~175℃,2h~4h。
4.1.7装配焊料球
目前业内采用的植球方法有两种:“锡膏”+“锡球”和“助焊膏”+ “锡球”。“锡膏”+“锡球”植球方法是业界公认的最好标准的植球法,用这种方法植出的球焊接性好、光泽好,熔锡过程不会出现焊球偏置现象,较易控制,具体做法就是先把锡膏印刷到 BGA 的焊盘上,再用植球机或丝网印刷在上面加上一定大小的锡球,这时锡膏起的作用就是粘住锡球,并在加温的时候让锡球的接触面更大,使锡球的受热更快更全面,使锡球熔锡后与焊盘焊接性更好并减少虚焊的可能。
4.1.8表面打标
打标就是在封装模块的顶表面印上去不掉的、字迹清楚的字母和标识,包括制造商的信息、国家、器件代码等,主要是为了识别并可跟踪。打码的方法有多种,其中最常用的是印码方法,而它又包括油墨印码和激光印码二种。
4.1.9分离工艺
为了提高生产效率和节约材料,大多数 SIP 的组装工作都是以阵列组合的方式进行,在完成模塑与测试工序以后进行划分,分割成为单个的器件。划分分割可以采用锯开或者冲压工艺,锯开工艺灵活性比较强,也不需要多少专用工具,冲压工艺则生产效率比较高、成本较低,但是需要使用专门的工具。
4.2倒装焊
和引线键合工艺相比较倒装焊工艺具有以下几个优点:
(1)倒装焊技术克服了引线键合焊盘中心距极限的问题;
(2)在芯片的电源 /地线分布设计上给电子设计师提供了更多的便利;
(3)通过缩短互联长度,减小 RC 延迟,为高频率、大功率器件提供更完善的信号;
(4)热性能优良,芯片背面可安装散热器;
(5)可靠性高,由于芯片下填料的作用,使封装抗疲劳寿命增强;
(6)便于返修。
以下是倒装焊的工艺流程(与引线键合相同的工序部分不再进行单独说明):圆片→焊盘再分布→圆片减薄、制作凸点→圆片切割→倒装键合、下填充→包封→装配焊料球→回流焊→表面打标→分离→最终检查→测试→包装。
4.2.1焊盘再分布
为了增加引线间距并满足倒装焊工艺的要求,需要对芯片的引线进行再分布。
4.2.2制作凸点
焊盘再分布完成之后,需要在芯片上的焊盘添加凸点,焊料凸点制作技术可采用电镀法、化学镀法、蒸发法、置球法和焊膏印刷法。目前仍以电镀法最为广泛,其次是焊膏印刷法。
4.2.3倒装键合、下填充
在整个芯片键合表面按栅阵形状布置好焊料凸点后,芯片以倒扣方式安装在封装基板上,通过凸点与基板上的焊盘实现电气连接,取代了WB和TAB 在周边布置端子的连接方式。倒装键合完毕后,在芯片与基板间用环氧树脂进行填充,可以减少施加在凸点上的热应力和机械应力,比不进行填充的可靠性提高了1到2个数量级。
五、封装的基板
封装基板是封装的重要组成部分,在封装中实现搭载器件和电气连同的作用,随着封装技术的发展,封装基板的设计、制造技术有了长足的进步。2001年国际半导体技术发展预测机构(ITRS)设定半导体芯片尺寸为310mm2,但随着元件IO数目的不断增加,就必须增加基板上的端子数量,对封装基板有了更精细化的要求,从而对封装基板的加工和设计有了更严格要求。
5.1封装几班的分类
封装基板的分类有很多种,目前业界比较认可的是从增强材料和结构两方面进行分类。
从结构方面来说,基板材料可分为两大类:刚性基板材料和柔性基板材料。刚性基板材料使用较为广泛,一般的刚性基板材料主要为覆铜板。它是用增强材料,浸以树脂胶黏剂,通过烘干、裁剪、叠合成坯料,然后覆上一层导电率较高、焊接性良好的纯铜箔,用钢板作为模具,在热压机中经高温高压成型加工而制成。
从增强材料方面分类,基板可以分为有有机系(树脂系)、无机系(陶瓷系、金属系)和复合系,前两种材料在性能上各有优缺点,而复合机系的出现综合了两者的优点,很快成为基板的发展方向。目前基板多采用有机系材料,也就是统称的BT树脂,改材料可分为CCL-H810、CCl-H870、CCL-HL870、CCL-HL950,介电常数在3.5 ~4.5(1MHz)之间,介电损耗为0.001~0.005(1MHz),玻璃转化温度为180~230℃。
5.2封装基板的设计规则
从封装基板常规制程来看,封装基板的生产与常规的PCB加工很类似,只是在要求上更为严格,规则的要求更为具体,需要更薄的叠层,更细的线宽线距以及更小的孔,具体参数各个板厂略有差异。
5.3封装基板的制程
常规的封装基板的制程与普通PCB的加工方法大体一致,但是目前为了满足封装基板的精细化要求出现了减成法、办减成法以及积层法等加工方法。
5.4基板的表面处理
在兴城电气图形之后,需要在焊盘处进行表面处理,形成所需要的镀层,表面处理的作用主要有两方面,第一是提高焊盘处的抗氧化能力,第二是提高韩判处的焊接能力并改善焊盘的平整度,一般的PCB表面处理方式主要有:热风整平;有机可焊性保护涂层;化学镍金;电镀金。
目前封装基板表面处理主要使用化学镍金和电镀金,金作为一种贵金属,具有良好的可焊性、耐氧化性、抗蚀性、接触电阻小、合金耐磨性好等优点
化学镍金:
化学镍金是采用金盐及催化剂在80~100℃的温度下通过化学反应析出金层的方法进行涂覆的,成本比电镀低,但是难以控制沉淀的金属厚度,表面硬并且平整度差,不适合作为采用引线键合工艺封装基板的表面处理方式。
电镀镍金:
电镀是指借助外界直流电的作用,在溶液中进行电解反应,是导电体(例如金属)的表面趁机金属或合金层。电镀分为电镀硬金和软金工艺,镀硬金与软金的工艺基本相同,槽液组成也基本相同,区别是硬金槽内添加了一些微量金属镍或钴或铁等元素,由于电镀工艺中镀层金属的厚度和成分容易控制,并且平整度优良,所以在采用键合工艺的封装基板进行表面处理时,一般采用电镀镍金工艺,铝线的键合一般采用硬金,金线的键合一般都用软金。不管是化学镍金还是电镀镍金,对于键合质量影响的关键是镀层的结晶和表面是否有污染,以及一定要求的镍金厚度。
六、结束语
系统级封装技术已经成为电子技术研究新热点和技术应用的主要方向之一,SIP封装工艺作为SIP封装技术的重要组成部分,值得从事相关技术行业的技术人员和学者进行研究和学习,引线键合和倒装焊作为系统级封装的两种工艺,各有其特点和优势,需要根据具体生产要求进行选择。
根据国际半导体路线组织(ITRS)的定义:SiP为将多个具有不同功能的有源电子元件与可选无源器件,以及诸如MEMS或者光学器件等其他器件优先组装到一起,实现一定功能的单个标准封装件,形成一个系统或者子系统。
从架构上来讲,SiP是将多种功能芯片,包括处理器、存储器等功能芯片集成在一个封装内,从而实现一个基本完整的功能。与SOC(片上系统)相对应。不同的是系统级封装是采用不同芯片进行并排或叠加的封装方式,而SOC则是高度集成的芯片产品。
1.1. More Moore VS More than Moore——SoC与SiP之比较
SiP是超越摩尔定律下的重要实现路径。众所周知的摩尔定律发展到现阶段,何去何从?行业内有两条路径:一是继续按照摩尔定律往下发展,走这条路径的产品有CPU、内存、逻辑器件等,这些产品占整个市场的50%。另外就是超越摩尔定律的More than Moore路线,芯片发展从一味追求功耗下降及性能提升方面,转向更加务实的满足市场的需求。这方面的产品包括了模拟/RF器件,无源器件、电源管理器件等,大约占到了剩下的那50%市场。
针对这两条路径,分别诞生了两种产品:SoC与SiP。SoC是摩尔定律继续往下走下的产物,而SiP则是实现超越摩尔定律的重要路径。两者都是实现在芯片层面上实现小型化和微型化系统的产物。
SoC与SIP是极为相似,两者均将一个包含逻辑组件、内存组件,甚至包含被动组件的系统,整合在一个单位中。SoC是从设计的角度出发,是将系统所需的组件高度集成到一块芯片上。SiP是从封装的立场出发,对不同芯片进行并排或叠加的封装方式,将多个具有不同功能的有源电子元件与可选无源器件,以及诸如MEMS或者光学器件等其他器件优先组装到一起,实现一定功能的单个标准封装件。
从集成度而言,一般情况下,SoC只集成AP之类的逻辑系统,而SiP集成了AP+mobile DDR,某种程度上说SIP=SoC+DDR,随着将来集成度越来越高,emmc也很有可能会集成到SiP中。
从封装发展的角度来看,因电子产品在体积、处理速度或电性特性各方面的需求考量下,SoC曾经被确立为未来电子产品设计的关键与发展方向。但随着近年来SoC生产成本越来越高,频频遭遇技术障碍,造成SoC的发展面临瓶颈,进而使SiP的发展越来越被业界重视。
1.2. SiP——超越摩尔定律的必然选择路径
摩尔定律确保了芯片性能的不断提升。众所周知,摩尔定律是半导体行业发展的“圣经”。在硅基半导体上,每18个月实现晶体管的特征尺寸缩小一半,性能提升一倍。在性能提升的同时,带来成本的下降,这使得半导体厂商有足够的动力去实现半导体特征尺寸的缩小。这其中,处理器芯片和存储芯片是最遵从摩尔定律的两类芯片。以Intel为例,每一代的产品完美地遵循摩尔定律。在芯片层面上,摩尔定律促进了性能的不断往前推进。
PCB板并不遵从摩尔定律,是整个系统性能提升的瓶颈。与芯片规模不断缩小相对应的是,PCB板这些年并没有发生太大变化。举例而言,PCB主板的标准最小线宽从十年前就是3 mil(大约75 um),到今天还是3 mil,几乎没有进步。毕竟,PCB并不遵从摩尔定律。因为PCB的限制,使得整个系统的性能提升遇到了瓶颈。比如,由于PCB线宽都没变化,所以处理器和内存之间的连线密度也保持不变。换句话说,在处理器和内存封装大小不大变的情况下,处理器和内存之间的连线数量不会显著变化。而内存的带宽等于内存接口位宽 乘以内存接口操作频率。内存输出位宽等于处理器和内存之间的连线数量,在十年间受到PCB板工艺的限制一直是64bit没有发生变化。所以想提升内存带宽只有提高内存接口操作频率。这就限制了整个系统的性能提升。
SIP是解决系统桎梏的胜负手。把多个半导体芯片和无源器件封装在同一个芯片内,组成一个系统级的芯片,而不再用PCB板来作为承载芯片连接之间的载体,可以解决因为PCB自身的先天不足带来系统性能遇到瓶颈的问题。以处理器和存储芯片举例,因为系统级封装内部走线的密度可以远高于PCB走线密度,从而解决PCB线宽带来的系统瓶颈。举例而言,因为存储器芯片和处理器芯片可以通过穿孔的方式连接在一起,不再受PCB线宽的限制,从而可以实现数据带宽在接口带宽上的提升。
我们认为,SiP不仅是简单地将芯片集成在一起。SiP还具有开发周期短;功能更多;功耗更低,性能更优良、成本价格更低,体积更小,质量更轻等优点,总结如下:
SiP工艺分析
SIP 封装制程按照芯片与基板的连接方式可分为引线键合封装和倒装焊两种。
2.1.引线键合封装工艺
引线键合封装工艺主要流程如下:
圆片→圆片减薄→圆片切割→芯片粘结→引线键合→等离子清洗→液态密封剂灌封→装配焊料球→回流焊→表面打标→分离→最终检查→测试→包装。
- 圆片减薄
圆片减薄是指从圆片背面采用机械或化学机械(CMP)方式进行研磨,将圆片减薄到适合封装的程度。由于圆片的尺寸越来越大,为了增加圆片的机械强度,防止在加工过程中发生变形、开裂,其厚度也一直在增加。但是随着系统朝轻薄短小的方向发展,芯片封装后模块的厚度变得越来越薄,因此在封装之前一定要将圆片的厚度减薄到可以接受的程度,以满足芯片装配的要求。
- 圆片切割
圆片减薄后,可以进行划片。较老式的划片机是手动操作的,现在一般的划片机都已实现全自动化。无论是部分划线还是完全分割硅片,目前均采用锯刀,因为它划出的边缘整齐,很少有碎屑和裂口产生。
- 芯片粘结
已切割下来的芯片要贴装到框架的中间焊盘上。焊盘的尺寸要和芯片大小相匹配,若焊盘尺寸太大,则会导致引线跨度太大,在转移成型过程中会由于流动产生的应力而造成引线弯曲及芯片位移现象。贴装的方式可以是用软焊料(指 Pb-Sn 合金,尤其是含 Sn 的合金)、Au-Si 低共熔合金等焊接到基板上,在塑料封装中最常用的方法是使用聚合物粘结剂粘贴到金属框架上。
- 引线键合
在塑料封装中使用的引线主要是金线,其直径一般为0.025mm~0.032mm。引线的长度常在1.5mm~3mm之间,而弧圈的高度可比芯片所在平面高 0.75mm。
键合技术有热压焊、热超声焊等。这些技术优点是容易形成球形(即焊球技术),并防止金线氧化。为了降低成本,也在研究用其他金属丝,如铝、铜、银、钯等来替代金丝键合。热压焊的条件是两种金属表面紧紧接触,控制时间、温度、压力,使得两种金属发生连接。表面粗糙(不平整)、有氧化层形成或是有化学沾污、吸潮等都会影响到键合效果,降低键合强度。热压焊的温度在 300℃~400℃,时间一般为 40ms(通常,加上寻找键合位置等程序,键合速度是每秒二线)。超声焊的优点是可避免高温,因为它用20kHz~60kHz的超声振动提供焊接所需的能量,所以焊接温度可以降低一些。将热和超声能量同时用于键合,就是所谓的热超声焊。与热压焊相比,热超声焊最大的优点是将键合温度从 350℃降到250℃左右(也有人认为可以用100℃~150℃的条件),这可以大大降低在铝焊盘上形成 Au-Al 金属间化合物的可能性,延长器件寿命,同时降低了电路参数的漂移。在引线键合方面的改进主要是因为需要越来越薄的封装,有些超薄封装的厚度仅有0.4mm 左右。所以引线环(loop)从一般的200 μ m~300 μ m减小到100μm~125μm,这样引线张力就很大,绷得很紧。另外,在基片上的引线焊盘外围通常有两条环状电源 / 地线,键合时要防止金线与其短路,其最小间隙必须>625 μ m,要求键合引线必须具有高的线性度和良好的弧形。
- 等离子清洗
清洗的重要作用之一是提高膜的附着力,如在Si 衬底上沉积 Au 膜,经 Ar 等离子体处理掉表面的碳氢化合物和其他污染物,明显改善了 Au 的附着力。等离子体处理后的基体表面,会留下一层含氟化物的灰色物质,可用溶液去掉。同时清洗也有利于改善表面黏着性和润湿性。
- 液态密封剂灌封
将已贴装好芯片并完成引线键合的框架带置于模具中,将塑封料的预成型块在预热炉中加热(预热温度在 90℃~95℃之间),然后放进转移成型机的转移罐中。在转移成型活塞的压力之下,塑封料被挤压到浇道中,并经过浇口注入模腔(在整个过程中,模具温度保持在 170℃~175℃左右)。塑封料在模具中快速固化,经过一段时间的保压,使得模块达到一定的硬度,然后用顶杆顶出模块,成型过程就完成了。对于大多数塑封料来说,在模具中保压几分钟后,模块的硬度足可以达到允许顶出的程度,但是聚合物的固化(聚合)并未全部完成。由于材料的聚合度(固化程度)强烈影响材料的玻璃化转变温度及热应力,所以促使材料全部固化以达到一个稳定的状态,对于提高器件可靠性是十分重要的,后固化就是为了提高塑封料的聚合度而必需的工艺步骤,一般后固化条件为 170℃~175℃,2h~4h。
- 液态密封剂灌封
目前业内采用的植球方法有两种:“锡膏”+“锡球”和“助焊膏”+ “锡球”。“锡膏”+“锡球”植球方法是业界公认的最好标准的植球法,用这种方法植出的球焊接性好、光泽好,熔锡过程不会出现焊球偏置现象,较易控制,具体做法就是先把锡膏印刷到 BGA 的焊盘上,再用植球机或丝网印刷在上面加上一定大小的锡球,这时锡膏起的作用就是粘住锡球,并在加温的时候让锡球的接触面更大,使锡球的受热更快更全面,使锡球熔锡后与焊盘焊接性更好并减少虚焊的可能。
- 表面打标
打标就是在封装模块的顶表面印上去不掉的、字迹清楚的字母和标识,包括制造商的信息、国家、器件代码等,主要是为了识别并可跟踪。打码的方法有多种,其中最常用的是印码方法,而它又包括油墨印码和激光印码二种。
- 分离
为了提高生产效率和节约材料,大多数 SIP 的组装工作都是以阵列组合的方式进行,在完成模塑与测试工序以后进行划分,分割成为单个的器件。划分分割可以采用锯开或者冲压工艺,锯开工艺灵活性比较强,也不需要多少专用工具,冲压工艺则生产效率比较高、成本较低,但是需要使用专门的工具。
2.2.倒装焊工艺
和引线键合工艺相比较倒装焊工艺具有以下几个优点:
(1)倒装焊技术克服了引线键合焊盘中心距极限的问题;
(2)在芯片的电源 /地线分布设计上给电子设计师提供了更多的便利;
(3)通过缩短互联长度,减小 RC 延迟,为高频率、大功率器件提供更完善的信号;
(4)热性能优良,芯片背面可安装散热器;
(5)可靠性高,由于芯片下填料的作用,使封装抗疲劳寿命增强;
(6)便于返修。
以下是倒装焊的工艺流程(与引线键合相同的工序部分不再进行单独说明):圆片→焊盘再分布→圆片减薄、制作凸点→圆片切割→倒装键合、下填充→包封→装配焊料球→回流焊→表面打标→分离→最终检查→测试→包装。
- 焊盘再分布
为了增加引线间距并满足倒装焊工艺的要求,需要对芯片的引线进行再分布。
- 制作凸点
焊盘再分布完成之后,需要在芯片上的焊盘添加凸点,焊料凸点制作技术可采用电镀法、化学镀法、蒸发法、置球法和焊膏印刷法。目前仍以电镀法最为广泛,其次是焊膏印刷法。
- 倒装键合、下填充
在整个芯片键合表面按栅阵形状布置好焊料凸点后,芯片以倒扣方式安装在封装基板上,通过凸点与基板上的焊盘实现电气连接,取代了WB和TAB 在周边布置端子的连接方式。倒装键合完毕后,在芯片与基板间用环氧树脂进行填充,可以减少施加在凸点上的热应力和机械应力,比不进行填充的可靠性提高了1到2个数量级。
SiP——为应用而生
3.1.主要应用领域
SiP的应用非常广泛,主要包括:无线通讯、汽车电子、医疗电子、计算机、军用电子等。
应用最为广泛的无线通讯领域。SiP在无线通信领域的应用最早,也是应用最为广泛的领域。在无线通讯领域,对于功能传输效率、噪声、体积、重量以及成本等多方面要求越来越高,迫使无线通讯向低成本、便携式、多功能和高性能等方向发展。SiP是理想的解决方案,综合了现有的芯核资源和半导体生产工艺的优势,降低成本,缩短上市时间,同时克服了SOC中诸如工艺兼容、信号混合、噪声干扰、电磁干扰等难度。手机中的射频功放,集成了频功放、功率控制及收发转换开关等功能,完整的在SiP中得到了解决。
汽车电子是SiP的重要应用场景。汽车电子里的SiP应用正在逐渐增加。以发动机控制单元(ECU)举例,ECU由微处理器(CPU)、存储器(ROM、RAM)、输入/输出接口(I/O)、模数转换器(A/D)以及整形、驱动等大规模集成电路组成。各类型的芯片之间工艺不同,目前较多采用SiP的方式将芯片整合在一起成为完整的控制系统。另外,汽车防抱死系统(ABS)、燃油喷射控制系统、安全气囊电子系统、方向盘控制系统、轮胎低气压报警系统等各个单元,采用SiP的形式也在不断增多。此外,SIP技术在快速增长的车载办公系统和娱乐系统中也获得了成功的应用。
医疗电子需要可靠性和小尺寸相结合,同时兼具功能性和寿命。在该领域的典型应用为可植入式电子医疗器件,比如胶囊式内窥镜。内窥镜由光学镜头、图像处理芯片、射频信号发射器、天线、电池等组成。其中图像处理芯片属于数字芯片、射频信号发射器则为模拟芯片、天线则为无源器件。将这些器件集中封装在一个SiP之内,可以完美地解决性能和小型化的要求。
SiP在计算机领域的应用主要来自于将处理器和存储器集成在一起。以GPU举例,通常包括图形计算芯片和SDRAM。而两者的封装方式并不相同。图形计算方面都采用标准的塑封焊球阵列多芯片组件方式封装,而这种方式对于SDRAM并不适合。因此需要将两种类型的芯片分别封装之后,再以SiP的形式封装在一起。
SiP在其他消费类电子中也有很多应用。这其中包括了ISP(图像处理芯片)、蓝牙芯片等。ISP是数码相机、扫描仪、摄像头、玩具等电子产品的核心器件,其通过光电转换,将光学信号转换成数字信号,然后实现图像的处理、显示和存储。图像传感器包括一系列不同类型的元器件,如CCD、COMS图像传感器、接触图像传感器、电荷载入器件、光学二极管阵列、非晶硅传感器等,SiP技术无疑是一种理想的封装技术解决方案。
蓝牙系统一般由无线部分、链路控制部分、链路管理支持部分和主终端接口组成,SiP技术可以使蓝牙做得越来越小迎合了市场的需求,从而大力推动了蓝牙技术的应用。SiP完成了在一个超小型封装内集成了蓝牙无线技术功能所需的全部原件(无线电、基带处理器、ROM、滤波器及其他分立元件)。
军事电子产品具有高性能、小型化、多品种和小批量等特点,SiP技术顺应了军事电子的应用需求,因此在这一技术领域具有广泛的应用市场和发展前景。SiP产品涉及卫星、运载火箭、飞机、导弹、雷达、巨型计算机等军事装备,最具典型性的应用产品是各种频段的收发组件。
3.2.SiP——为智能手机量身定制
手机轻薄化带来SiP需求增长。手机是SiP封装最大的市场。随着智能手机越做越轻薄,对于SiP的需求自然水涨船高。从2011-2015,各个品牌的手机厚度都在不断缩减。轻薄化对组装部件的厚度自然有越来越高的要求。以iPhone 6s为例,已大幅缩减PCB的使用量,很多芯片元件都会做到SiP模块里,而到了iPhone8,有可能是苹果第一款全机采用SiP的手机。这意味着,iPhone8一方面可以做得更加轻薄,另一方面会有更多的空间容纳其他功能模块,比如说更强大的摄像头、扬声器,以及电池。
从苹果产品看SiP应用。苹果是坚定看好SiP应用的公司,苹果在之前Apple Watch上就已经使用了SiP封装。
除了手表以外,苹果手机中使用SiP的颗数也在逐渐增多。列举有:触控芯片,指纹识别芯片,RFPA等。
触控芯片。在Iphone6中,触控芯片有两颗,分别由Broadcom和TI提供,而在6S中,将这两颗封在了同一个package内,实现了SiP的封装。而未来会进一步将TDDI整个都封装在一起。iPhone6s中展示了新一代的3D Touch技术。触控感应检测可以穿透绝缘材料外壳,通过检测人体手指带来的电压变化,判断出人体手指的触摸动作,从而实现不同的功能。而触控芯片就是要采集接触点的电压值,将这些电极电压信号经过处理转换成坐标信号,并根据坐标信号控制手机做出相应功能的反应,从而实现其控制功能。3D Touch的出现,对触控模组的处理能力和性能提出了更高的要求,其复杂结构要求触控芯片采用SiP组装,触觉反馈功能加强其操作友好性。
指纹识别同样采用了SiP封装。将传感器和控制芯片封装在一起,从iPhone 5开始,就采取了相类似的技术。
RFPA模块。手机中的RFPA是最常用SiP形式的。iPhone 6S也同样不例外,在iPhone 6S中,有多颗RFPA芯片,都是采用了SiP。
按照苹果的习惯,所有应用成熟的技术会传给下一代,我们判断,即将问世的苹果iPhone7会更多地采取SiP技术,而未来的iPhone7s、iPhone8会更全面,更多程度的利用SiP技术,来实现内部空间的压缩。
SoC和SIP
自集成电路器件的封装从单个组件的开发,进入到多个组件的集成后,随着产品效能的提升以及对轻薄和低耗需求的带动下,迈向封装整合的新阶段。在此发展方向的引导下,形成了电子产业上相关的两大新主流:系统单芯片SoC(System on Chip)与系统化封装SIP(System in a Package)。
SoC与SIP是极为相似,两者均将一个包含逻辑组件、内存组件,甚至包含被动组件的系统,整合在一个单位中。
SoC是从设计的角度出发,是将系统所需的组件高度集成到一块芯片上。
SIP是从封装的立场出发,对不同芯片进行并排或叠加的封装方式,将多个具有不同功能的有源电子元件与可选无源器件,以及诸如MEMS或者光学器件等其他器件优先组装到一起,实现一定功能的单个标准封装件。
构成SIP技术的要素是封装载体与组装工艺,前者包括PCB、LTCC、Silicon Submount(其本身也可以是一块IC),后者包括传统封装工艺(Wire bond和Flip Chip)和SMT设备。无源器件是SIP的一个重要组成部分,如传统的电容、电阻、电感等,其中一些可以与载体集成为一体,另一些如精度高、Q值高、数值高的电感、电容等通过SMT组装在载体上。
从集成度而言,一般情况下,SoC只集成AP之类的逻辑系统,而SiP集成了AP+mobile DDR,某种程度上说SIP=SoC+DDR,随着将来集成度越来越高,emmc也很有可能会集成到SIP中。
从封装发展的角度来看,因电子产品在体积、处理速度或电性特性各方面的需求考量下,SoC曾经被确立为未来电子产品设计的关键与发展方向。但随着近年来SoC生产成本越来越高,频频遭遇技术障碍,造成SoC的发展面临瓶颈,进而使SIP的发展越来越被业界重视。
SIP的封装形态
SIP封装技术采取多种裸芯片或模块进行排列组装,若就排列方式进行区分可大体分为平面式2D封装和3D封装的结构。相对于2D封装,采用堆叠的3D封装技术又可以增加使用晶圆或模块的数量,从而在垂直方向上增加了可放置晶圆的层数,进一步增强SIP技术的功能整合能力。而内部接合技术可以是单纯的线键合(Wire Bonding),也可使用覆晶接合(Flip Chip),也可二者混用。
另外,除了2D与3D的封装结构外,还可以采用多功能性基板整合组件的方式——将不同组件内藏于多功能基板中,达到功能整合的目的。不同的芯片排列方式,与不同的内部接合技术搭配,使SIP的封装形态产生多样化的组合,并可依照客户或产品的需求加以客制化或弹性生产。
SIP的技术难点
SIP的主流封装形式是BGA,但这并不是说具备传统先进封装技术就掌握了SIP技术。
对于电路设计而言,三维芯片封装将有多个裸片堆叠,如此复杂的封装设计将带来很多问题:比如多芯片集成在一个封装内,芯片如何堆叠起来;再比如复杂的走线需要多层基板,用传统的工具很难布通走线;还有走线之间的间距,等长设计,差分对设计等问题。
此外,随着模块复杂度的增加和工作频率(时钟频率或载波频率)的提高,系统设计的难度会不断增加,设计者除具备必要的设计经验外,系统性能的数值仿真也是必不可少的设计环节。
来源:集成电路前沿