这是使用示波器测试常常遇到探头的问题之一。

差分探头问题
最近收到一个客户的问题,说用探头测量一个晶振出来的 25MHz 的时钟信号,分别用三种探头测量,测试出来的幅度值有明显差异,使用无源探头 N2873A 和 1131A 测试的幅度基本一致,大概是 3.3V,但用 1169A 测试的结果偏小,幅度在 2.8V 左右,“为什么 1169A 探头上标注的最大电压 30V 却测不出来 3.3V 的信号呢” “为什么 1169A 测试出来的幅度不准呢?”
v2-aacf5df5bca339be03295043f6535aa1_720w.jpg
v2-71c8cd7b21684c335f56911cdf953b69_720w.jpg
是德科技无源探头图片
从客户发过来的波形来看,客户测量的是一个幅度为 3.3V 单端信号,三种探头无源单端探头测试这个信号完全没有问题,实际上 1131A 的动态范围是 5V,1169A 动态范围 是 3.3V,探头主体上标注的 30V 是探头最大能承受的损坏电压而不是准确测量范围,这 第二个问题的答案,那么对于幅度测“不准”呢?
先来看一下 1130A探头 和 1169A 的指标:
v2-71e7bc8566dd45acb5d912c4fbaa904a_720w.jpg
示波器探头-为测量差分和单端信号提供大共模范围和宽偏置范围
我们来理解一下这个动态范围是什么意思,这实际上指的是探头的有效输入电压范围,探头放大器的动态范围受限于放大器的线性范围,如果在放大器电路输入电压的操作 点已经超过其线性区域,放大器将出现增益压缩或饱和等问题,反映在测量波形上来说就 是波形被削波了,测量的幅度偏小了。
通常来说差分探头是用来测试差分信号,可以提供 一个非常好的共模抑制比,但带宽越宽通常动态范围就越小,比如 1168A 的 10G 的探头放大器的动态范围 3.3Vpp 要小于 1131A 的 5Vpp。  用户的这个问题是一个很好的测试案例,可以帮助我们理解这个问题的原因,以及 触发我们探寻正确的测量方法。

什么是差分探头?
“差分”探头是一种有源探头,有两个输入端,一个正极,一个负极以及一个单独的地线;它驱动一个单端 50-Ω 电缆将其输出传输到示波器通道。输出信号与出现在两个输入端电压之间的差值成比例。差分探头互为参考,而不是对地电压,并且观测存在大的直流偏移时的小信号,或其它常用模式的信号,如电源传输线噪声。
v2-853565b65a9e02e48b43b20546e83e15_720w.jpg
是德科技差分探头图片
您通常会选择单端有源探头测量单端信号(跟地线有关的电压)以及差分有源探头测量差分信号(正电压对负电压)。
但是,要记住一件事,差分探头中信号连接之间的有效接地要比单端探头中大部分的接地层更为理想。此接地有效地将探头地线以非常低的阻抗连接到被测设备(简称DUT)。所以,差分探头要比单端探头对单端信号做出更好的测量。

示波器探头问题分析  
对于 1168A 来说,我们注意它的动态范围是 3.3V,那为什么不能直接正确测量这个 3.3V 的信号呢?实际上差分探头的动态范围指的是差分的动态范围,如果以无直流差分 信号,也就是差分的共模点(对称点)为 0 来说,“+”端和“-”端能够准确测量的范围到 +1.65V 和-1.65V(实际上 1168A 的可测量范围要大于此值),但某些差分信号除了差分特性 外也有共模电平,比如 TMDS 结构,在末端通过 3.3V 上拉,探头的共模电压(<100Hz)达到 6.75V。但对于 0 ~ 3.3Vpp 的单端方波信号,探头设置为差分模式,探头“+”端接在信号 端,探头“-”端接地,差分探头并不能有效抑制正端的偏置,而幅度已经超过了放大器 线性工作的范围,会出现失真或者说幅度压缩。

相关问题:只有在探测差分信号时你才使用差分探头吗?
许多人认为只有在探测差分信号时才使用差分探头。您是否知道,在探测单端信号时,也可以使用差分探头?这将为您节省大量时间和金钱,并提高测量的准确性。最大限度地利用差分探头,获得尽量最好的信号保真度。
差分探头可以进行与单端探头相同的测量,并且由于差分探头在两个输入端上有共模抑制,所以差分测量结果的噪声大为减少。这使您可以看到被测设备信号的更好表示,而不会被探测所增加的随机噪声误导。
请看下一页图1 中的蓝色单端测量信号和图 2 中的红色差分测量信号。蓝色的单端测量结果与红色的差分测量结果相比,噪声要多得多,因为单端探头缺少共模校正功能。
图片.png
图 1:单端测量
图片.png
图 2:差分测量
差分探头可以执行与单端探头相同类型的测量,但共模抑制功能使其噪声明显降低。
Keysight InfiniiMax 差分探头经过DSP校正,具有平坦的幅度和相位响应,可提供最高的精度。 选择校正到的带宽通常约为3dB的未校正带宽。 通常,将带宽扩展到远远超过该3dB带宽频点将增加本底噪声,如果进一步加大带宽,则可能导致不真实的镜像噪声信号。 但是,N5381A / B焊入式探头前端与InfiniiMax 1169A / B探头放大器结合使用是将带宽扩展到3dB以上的极佳选择,因为N5381A / B的最高带宽超过了常规的12 GHz带宽,并且 探头前端的频响曲线峰值点可以帮助补偿探头放大器带宽的下降。

示波器探头解决方案  
示波器差分探头有两种工作模式,分别是单端模式和差分模式。当设置为差分模式 时,当我们调节 offset 的时候实际上是调整经过放大器的差分运算以后,在示波器内部调 整 offset 使得信号落在示波器模拟前端的线性范围内;当设置为单端模式,当调整 offset 时,调整的是在进入放大器之前,探头“+” 端的信号偏置,1168/9A 可调的范围达到 ±16V,这样的话,如果使用差分探头测量单端信号,就可以调整 offset 使得进入到放大器 的信号幅度落在放大器的动态范围内,就能准确测量出来信号幅度,下图就是探头放大器 的结构框图。
图片.png
在示波器的软件里,探头放大器如果接的是差分探头前端,可探测模式有两种模式可选,如下图所示,大家在测量单端信号的 时候一定要注意,选择单端探头模式,调整合适的偏置可以提高探头的测量范围。  
图片.png
在按照建议设置为单端模式后,调整 offset,如下图可见使用 1168A 探头的测量结 果和其它两个探头的测量结果是一致的。
图片.png

示波器探头怎么选择?
示波器差分探头和单端有源电压探头性能比较
过去在使用高带宽示波器和有源探头进行测量时,您可以选择单端探头,也可以选择差分探头。一般是用单端探头测量单端信号 ( 对地电压 ),用差分探头测量差分信号 ( 正电压-负电压 )。
虽然也可以只买差分探头,用差分探头测量差分信号和单端信号,但出于一些实际考虑,多数人并不这样做。理由是,与单端探头相比,差分探头通常价格更高和更难以使用,而且带宽更小。
Keysight InfiniiMax 探头系统既可用于差分检测,又可用于单端检测,从而很大程度上排除了过去拒绝使用差分探头的理由。新的探头系统使用可更换的探头前端,这些前端特别适用于手动点测、插孔连接和焊入连接等测量方式。
对于这种新的探测方式,您需要确定是用差分探头还是单端探头测量单端信号。为作出最好的决定,您需要考虑差分探头与单端探头在性能和可用性方面的优缺点。
我们将在下几方面比较了差分探头和单端探头的性能和可用性的优缺点 :
– 带宽、保真度和可用性
– 共模抑制
– 输入负载
– 测量可重复性
– 物理尺寸
图片.png
图 1. 差分探头和单端探头的简化模型
我们用简化模型 ( 图 1) 帮助比较,并用 Keysight 1134A 7 GHz 探头放大器配合焊入式差分探头前端和焊入式单端探头前端测量数据。这两种探头前端的物理连接尺寸非常接近,因此它们的性能差别主要是因为差分和单端电路元件的布局造成的。图 2 和图 3 是这些探头的照片。

带宽、保真度和可用性比较
如前所述,单端探头的带宽通常比差分探头更高。但这一结果是源自某些基本物理定律,还仅仅是源自不同体系结构的实际实现方法?
为回答这一问题,让我们考虑图 1 所示的差分探头和单端探头连接中寄生参数的简化模型。由于单端和差分探头前端的几何尺寸大致相同,因此电感和电容参数的量值也相当。如果接地连接使用又宽又平的导体( 就像“刀片”),单端探头的接地电感(lg)会稍低一些,但也低不到哪里去。应注意差分探头在其两个输入上都有补偿阻尼 (tip resistor),而单端探头只在信号输入上有补偿阻尼,地线上没有阻尼 ( 在实际探头中是 0 Ω 电阻器 )。这些补偿阻尼用于消除输入连接中电感器 (Ls) 和电容器 (Cs) 所造成的谐振。要更深入了解这一话题,请参看是德科技应用指南 1404《高带宽电压探头的保真度》。
从对单端模型的分析,可看到带宽决定于电感值和电容值,其中对地电感 (lg) 非常重要。
在较高频率下,对地电感会在器件接地与探头接地之间产生一个电压,从而减小探头衰减器 / 放大器输入端上的信号。您可通过减小对地电感来增加带宽。这需要缩短接地线的长度,或增加连接的面积。理想的接地线应是非常短、又比较宽的导体平面或围绕信号连接的环形圆柱体 ( 形成同轴的探头连接 )。在实际测量条件下,理想的接地线通常是不存在的,而且会大大降低单端探头的可用性。
图片.png
图片.png
此外,给出同轴夹具中的单端探头的技术指标是没有用的,因为在实际测试中,您基本上无法采用这种方式来测量。
如果您分析由差分信号 (vcm=0,vp=vm) 驱动的差分模型,就会看到由于正负信号连接的固有对称性,在连接间就会存在一个没有净信号的平面。您可将这个“有效的”地平面视为牢固地接到器件的地平面和探头放大器的接地端。考虑到有效地平面的存在,即可分析半电路模型,此时信号地的环路面积近似为单端环路面积的一半,所以电感要低得多。从半电路模型分析可以看到,差分模型的带宽要远高于单端模型。此外,有效地平面是理想的接地连接,而且毫不影响其可用性。
当差分探头受单端源驱动时,您可用叠加法确定总响应。当 vcm = vp = vm 时,在电路中施加单端信号。对于叠加的第一项,把 vcm“关闭”;对于叠加的第二项,把 vp 和 vm“关闭”。第一项是单端信号差分部分的响应,因此该响应和前面的讨论一致。第二项是单端信号共模部分的响应,因此其响应决定于探头的共模抑制。如果探头有良好的共模抑制能力,那么对单端信号的总响应就只是对单端信号差模成分的响应。如果探头的共模抑制不好,就会看到测量差分信号和测量单端信号的响应差异。从图 4 可以看到,这些响应实际上并无差别。
图 4 显示了用差分探头检测单端信号 ( 绿色 ) 和用单端探头检测单端信号 ( 蓝色 ) 的频率响应,两者都使用同样的 7 GHz 探头放大器。探头的带宽定义为探头输出幅度相对输入幅度下降到 -3 dB 处的频率。显然,差分探头前端的带宽要比单端探头前端高得多(7.8 GHz 对 5.4 GHz)。这两种探头因为在连接中使用了正确的阻尼电阻,所以都有很高的频率平坦度。
图 5 显示了对于输入约 100 ps 上升时间的阶跃信号,差分探头所测得的时域响应。图 6 显示了对于输入约 100 ps 上升时间的阶跃信号,单端探头所测得的时域响应。在这两个图中,红色轨迹是探头的输出,绿色轨迹是探头的输入。应注意这不是探头的阶跃响应,而只是测量它们能在多大程度上跟踪 100 ps 的阶跃信号。为测量阶跃响应,输入必须是非常完美的、有极快上升时间的阶跃信号,此时差分探头能显示出比单端探头更快的上升时间。这两种探头都能很好地跟踪 100 ps 的阶跃信号。
图片.png 图片.png


共模抑制问题
共模抑制是差分探头和单端探头都存在的问题。
对差分探头来说,共模抑制使加至 + 和 - 探头输入的相同信号不产生输出。对单端探头来说,共模抑制使加至信号输入和接地输入的相同信号不产生输出。
差分探头和单端探头模型 ( 图 1) 显示了从探头衰减器 / 放大器接地到“大地”的电阻和电感。这是由探头电缆屏蔽层和大地构成的传输线 ( 或天线 ) 所造成阻抗的简化模型。这一“外模式”阻抗是非常重要的,因为在单端探头上施加共模信号时,地电感就与该外模式阻抗构成分压器,从而衰减了放大器得到的地信号。由于放大器的信号输入没有得到与地输入同样的衰减,这就在放大器的输入端造成一个净信号,并由此产生一个输出。地电感越高,共模抑制就越低,因此您在使用单端探头时,务必使地线尽可能短。还应注意该外模式信号并不直接影响“内模式”信号 ( 即同轴电缆内的正常探头输出信号 ),但反射的外模式信号将影响探头放大器的地,从而间接影响内模式信号。“测量可重复性”部分对此有进一步的说明。
当共模信号施加至差分探头时,在 + 和 - 输入端至衰减器 /放大器上可看到同样的信号。所产生的输出将由放大器共模抑制决定,而并非由连接电感造成。
forum.jpg
当您检测含有共模噪声的单端信号时,需要确定是差分探头还是单端探头有更好的共模抑制能力。这取决于单端探头的接地连接电感,以及差分探头中放大器的共模抑制能力。对于本例中的差分和单端探头前端,图 7 显示差分探头的共模抑制要比单端探头高得多,因此在高共模噪声环境中能够进行更好的测量。这是两种探头最常见的情况,除非单端探头有极低电感的接地连接,但这在现实中是难以实现的。应注意这里分析的单端探头,其共模抑制能力远好于其他许多单端探头,因为它的地线很短。
图 7 中的共模响应定义为 :
差分共模响应 = 20[log(voc/vic)]
这里 vic 是 + 和 - 输入的公共电压
Voc 是施加 vic 时探头输出处的电压
单端共模响应 = 20[log(voc/vic)]
这里 vic 信号输入和地输入的公共电压
voc 是施加 vic 时探头输出处的电压
图片.png

示波器探头输入负载效应比较
什么是探头负载?
将示波器探头连接到在线测试点时,探头本身成了被测电路的一部分,并且会影响测量结果。这通常称为"探头负载"。
如果您用差分探头前端和单端探头前端的电感和电容值分析图 1 中的电路模型,您将发现从单端源看过去的各探头前端输入阻抗没有多少差别。分析的另一方面是了解外模式阻抗如何影响差分和单端探头。在单端探头放大器模型中,外模式阻抗要比接地连接阻抗高得多 ( 由于存在 lg),因此它对输入阻抗并没有明显影响。但由于存在外模式阻抗,进入差分探头的单端信号将看到较高频率比较低频率有略低的容抗值。
图 8 是差分探头和单端探头的输入阻抗 ( 幅值 ) 图。红色轨迹是施加差分源时所看到的差分探头阻抗。绿色轨迹是施加单端源时看到的差分探头阻抗,蓝色轨迹是施加单端源时看到的单端探头阻抗。图 8 中标注了这三种情况的直流电阻、电容和最小电感值。应注意差分探头和单端探头对单端信号的输入阻抗很类似。

测量的可重复性
测量的可重复性是与高频探头相关的问题。在理想情况下,探头位置、电缆位置和手的位置都不应造成探头测量结果的变化。但许多情况下都并非如此。通常的原因是外模式阻抗的改变。这一阻抗实际上远比所示的探头模型复杂,因为探头、手和电缆位置都会给未经屏蔽的传输线 ( 或天线 ) 造成极大的影响。
如果您通过改变外模式阻抗分析单端模型,就会发现它可以导致响应变化。此外,由于外模式阻抗也是共模响应中的一个因素,因此该阻抗的变化也会造成共模抑制的变化。接地连接的阻抗越高,响应的变化就越大。
通过改变外模式阻抗分析差分模型,可以发现这一变化只引起很小的响应变化。在探头放大器地上出现的任何信号都会受到放大器的共模抑制。因此,由探头、手和电缆位置引起的响应变化可得到很大的衰减。从第 5 页的图 4 中可以看到,差分探头的响应要比单端探头平滑得多。单端探头响应中有许多由外模式阻抗的变化所造成的“扰动和扭曲”。当阻抗变化时,响应也随之变化。探头电缆上的铁电磁珠能通过衰减和限制外模式信号来减小外模式阻抗的变化量,从而缓解这一问题。它能减小探头、手和电缆位置造成的响应变化。

示波器探头的物理尺寸考虑
通过前面对差分探头和单端探头的比较,可以看到不管是检测差分信号,还是检测单端信号,差分探头在各方面的性能都优于单端探头。但有时仍可考虑使用单端探头。单端探头在许多测量情况下能够提供可接受的结果,此外价格较低,而且由于探头前端较为简单,因而体积也较小。从物理上考虑,小探头能伸入到狭窄的地方进行探测,也能把多个探头接到非常密集的被测点。因此在一个探测系统中,探头最好是既能作差分检测,又能作单端检测。

总结
由于地跳、串扰和 EMI 问题,电子行业正在用差分信号取代单端信号。对于在这一新领域中使用的测量设备,差分检测是必不可少的要求。因为差分探头中信号连接之间的有效地平面比单端探头中的大多数实际地连接 ( 非同轴 ) 更为理想,所以差分探头对单端信号的测量比单端探头更好。新一代差分探头易于使用、性能高、价格低,您可用它们来检测差分信号和单端信号。

来源:是德科技