温补晶振是一种石英晶体振荡器,通过其附加的温度补偿电路来减小因环境温度变化而引起的振荡频率的变化。TCXO通过采用感应温度补偿网络来控制环境温度并将晶体拉至其标称值。基本振荡器电路和输出级与VCXO中的预期相同。


其温度补偿的原理是通过改变振荡电路中的负载电容,使其随温度变化,来补偿谐振器因环境温度变化而产生的频率漂移。


对于温补晶振是用热敏电阻等感温元件组成温度-电压转换电路,将电压施加到与晶体振荡器串联的变容二极管上,通过晶体振荡器串联电容的变化来补偿晶体振荡器的非线性频率漂移,这些都是温补晶振。

250PT.png

TCXO的特性决定了它用于要求温度稳定性的场合。TCXO 晶振比其他振荡器(如SPXO 晶振和VCXO振荡器)具有更好的温度稳定性。


TCXO弥补了标准XO或VCXO与OCXO恒温晶振之间的差距,后者更大,需要更多的功率来运行。


TCXO 晶振较为普遍,使用范围较广泛。在电子元器件行业,很容易看到相符的TCXO,而且单价大多不高。但大多数人只知道TCXO 晶振有一个肤浅的基础。因为设计师发现可以使用DDS解决方案实现更好的频率分辨率,通过数模转换器转向TCXO 晶振。因为转向是在DDS而不是振荡器中完成的,所以设计人员需要能够对频率如何,固定的参考值会随温度而变化做出一些假设,这样他们就可以相应地规划锁相的设计周期。


通常的做法是使用规范,比如0.28ppm,对应的是工作温度范围,通常是25。-20至70和-40至85是两个常见的温度范围。如果将25的频率设定为标称值,则设备的频率可能偏离或高于标称频率不超过0.28ppm,这与规定的温度稳定性不同,属于另一种方法,使用峰值或仅/-去除无参考点的值。在这种情况下,可能不知道标称频率将如何变化,但总范围是已知的,并且使用定义的参考点的值来选设备。


TCXO对工程师较有参考意义,因为他们可以使用10到40倍的温度稳定性,并且功耗和占地面积与标准VCXO相同。轴反转使曲线向温度稳定性增加的方向增长。TCXO稳定范围覆盖了VCXO和OCXO之间的中间位置(在某些情况下可以保留一些OCXO性能)。