PCF8591 是一个单电源低功耗的 8 位 CMOS 数据采集器件,具有 4 路模拟输入,1 路模拟输出和一个串行 I2C 总线接口用来与单片机通信。与前面讲过的 24C02 类似,3 个地址引脚 A0、A1、A2 用于编程硬件地址,允许最多 8 个器件连接到 I2C 总线而不需要额外的片选电路。器件的地址、控制以及数据都是通过 I2C 总线来传输,我们先看一下 PCF8591 的原理图,如图 17-3 所示。

图 17-3 PCF8591 原理图
其中引脚 1、2、3、4 是 4 路模拟输入,引脚 5、6、7 是 I2C 总线的硬件地址,8 脚是数字地 GND,9 脚和 10 脚是 I2C 总线的 SDA 和 SCL。12 脚是时钟选择引脚,如果接高电平表示用外部时钟输入,接低电平则用内部时钟,我们这套电路用的是内部时钟,因此 12 脚直接接 GND,同时 11 脚悬空。13 脚是模拟地 AGND,在实际开发中,如果有比较复杂的模拟电路,那么 AGND 部分在布局布线上要特别处理,而且和 GND 的连接也有多种方式,这里大家先了解即可。在我们板子上没有复杂的模拟部分电路,所以我们把 AGND 和 GND 接到一起。14 脚是基准源,15 脚是 DAC 的模拟输出,16 脚是供电电源 VCC。
PCF8591 的 ADC 是逐次逼近型的,转换速率算是中速,但是它的速度瓶颈在 I2C 通信上。由于 I2C 通信速度较慢,所以最终的 PCF8591 的转换速度,直接取决于 I2C 的通信速率。由于 I2C 速度的限制,所以 PCF8591 得算是个低速的 AD 和 DA 的集成,主要应用在一些转换速度要求不高,希望成本较低的场合,比如电池供电设备,测量电池的供电电压,电压低于某一个值,报警提示更换电池等类似场合。
Vref 基准电压的提供有两种方法。一是采用简易的原则,直接接到 VCC 上去,但是由于 VCC 会受到整个线路的用电功耗情况影响,一来不是准确的 5V,实测大多在 4.8V 左右,二来随着整个系统负载情况的变化会产生波动,所以只能用在简易的、对精度要求不高的场合。方法二是使用专门的基准电压器件,比如 TL431,它可以提供一个精度很高的 2.5V 的电压基准,这是我们通常采用的方法。如图 17-4 所示。

图 17-4 PCF8591 基准与对外接口原理图
图中 J17 是双排插针,大家可以根据自己的需求选择跳线帽短接还是使用杜邦线连接其它外部电路,二者都是可以的。在这个地方,我们直接把 J17 的 3 脚和 4 脚用跳线帽短路起来,那么现在 Vref 的基准源就是 2.5V 了。分别把 5 和 6、7 和 8、9 和 10、11 和 12 用跳线帽短接起来的话,那么我们的 AIN0 实测的就是电位器的分压值,AIN1 和 AIN2 测的是 GND的值,AIN3 测的是+5V 的值。这里需要注意的是,AIN3 虽然测的是+5V 的值,但是对于AD 来说,只要输入信号超过 Vref 基准源,它得到的始终都是最大值,即 255,也就是说它实际上无法测量超过其 Vref 的电压信号的。需要注意的是,所有输入信号的电压值都不能超过 VCC,即+5V,否则可能会损坏 ADC 芯片。
PCF8591应用程序
PCF8591 的通信接口是 I2C,那么编程肯定是要符合这个协议的。单片机对 PCF8591 进行初始化,一共发送三个字节即可。第一个字节,和 EEPROM 类似,是器件地址字节,其中 7 位代表地址,1 位代表读写方向。地址高 4 位固定是 0b1001,低三位是 A2,A1,A0,这三位我们电路上都接了 GND,因此也就是 0b000,如图 17-5 所示。

图 17-5 PCF8591 地址字节
发送到 PCF8591 的第二个字节将被存储在控制寄存器,用于控制 PCF8591 的功能。其中第 3 位和第 7 位是固定的 0,另外 6 位各自有各自的作用,如图 17-6 所示,我逐一介绍。

图17-6 PCF8591 控制字节
控制字节的第 6 位是 DA 使能位,这一位置 1 表示 DA 输出引脚使能,会产生模拟电压输出功能。第 4 位和第 5 位可以实现把 PCF8591 的 4 路模拟输入配置成单端模式和差分模式,单端模式和差分模式的区别,我们在 17.5 节有介绍,这里大家只需要知道这两位是配置 AD输入方式的控制位即可,如图 17-7 所示。

图 17-7 PCF8591 模拟输入配置方式
控制字节的第 2 位是自动增量控制位,自动增量的意思就是,比如我们一共有 4 个通道,当我们全部使用的时候,读完了通道 0,下一次再读,会自动进入通道 1 进行读取,不需要我们指定下一个通道,由于 A/D 每次读到的数据,都是上一次的转换结果,所以同学们在使用自动增量功能的时候,要特别注意,当前读到的是上一个通道的值。为了保持程序的通用性,我们的代码没有使用这个功能,直接做了一个通用的程序。
控制字节的第 0 位和第 1 位就是通道选择位了,00、01、10、11 代表了从 0 到 3 的一共4 个通道选择。
发送给 PCF8591 的第三个字节 D/A 数据寄存器,表示 D/A 模拟输出的电压值。D/A 模拟我们一会介绍,大家知道这个字节的作用即可。我们如果仅仅使用 A/D 功能的话,就可以不发送第三个字节。
下面我们用一个程序,把 AIN0、AIN1、AIN3 测到的电压值显示在液晶上,同时大家可以转动电位器,会发现 AIN0 的值发生变化。
/***************************Lcd1602.c 文件程序源代码*****************************/
(此处省略,可参考之前章节的代码)
/*****************************I2C.c 文件程序源代码*******************************/
(此处省略,可参考之前章节的代码)
- /*****************************main.c 文件程序源代码******************************/
- #include <reg52.h>
- bit flag300ms = 1; //300ms 定时标志
- unsigned char T0RH = 0; //T0 重载值的高字节
- unsigned char T0RL = 0; //T0 重载值的低字节
- void ConfigTimer0(unsigned int ms);
- unsigned char GetADCValue(unsigned char chn);
- void ValueToString(unsigned char *str, unsigned char val);
- extern void I2CStart();
- extern void I2CStop();
- extern unsigned char I2CReadACK();
- extern unsigned char I2CReadNAK();
- extern bit I2CWrite(unsigned char dat);
- extern void InitLcd1602();
- extern void LcdShowStr(unsigned char x, unsigned char y, unsigned char *str);
- void main(){
- unsigned char val;
- unsigned char str[10];
- EA = 1; //开总中断
- ConfigTimer0(10); //配置 T0 定时 10ms
- InitLcd1602(); //初始化液晶
- LcdShowStr(0, 0, "AIN0 AIN1 AIN3"); //显示通道指示
- while (1){
- if (flag300ms){
- flag300ms = 0; //显示通道 0 的电压
- val = GetADCValue(0); //获取 ADC 通道 0 的转换值
- ValueToString(str, val); //转为字符串格式的电压值
- LcdShowStr(0, 1, str); //显示到液晶上
- //显示通道 1 的电压
- val = GetADCValue(1);
- ValueToString(str, val);
- LcdShowStr(6, 1, str);
- //显示通道 3 的电压
- val = GetADCValue(3);
- ValueToString(str, val);
- LcdShowStr(12, 1, str);
- }
- }
- }
- /* 读取当前的 ADC 转换值,chn-ADC 通道号 0~3 */
- unsigned char GetADCValue(unsigned char chn){
- unsigned char val;
- I2CStart();
- if (!I2CWrite(0x48<<1)){ //寻址 PCF8591,如未应答,则停止操作并返回 0
- I2CStop();
- return 0;
- }
- I2CWrite(0x40|chn); //写入控制字节,选择转换通道
- I2CStart();
- I2CWrite((0x48<<1)|0x01); //寻址 PCF8591,指定后续为读操作
- I2CReadACK(); //先空读一个字节,提供采样转换时间
- val = I2CReadNAK(); //读取刚刚转换完的值
- I2CStop();
- return val;
- }
- /* ADC 转换值转为实际电压值的字符串形式,str-字符串指针,val-AD 转换值 */
- void ValueToString(unsigned char *str, unsigned char val){
- //电压值=转换结果*2.5V/255,式中的 25 隐含了一位十进制小数
- val = (val*25) / 255;
- str[0] = (val/10) + '0'; //整数位字符
- str[1] = '.'; //小数点
- str[2] = (val%10) + '0'; //小数位字符
- str[3] = 'V'; //电压单位
- str[4] = '\0'; //结束符
- }
- /* 配置并启动 T0,ms-T0 定时时间 */
- void ConfigTimer0(unsigned int ms){
- unsigned long tmp; //临时变量
- tmp = 11059200 / 12; //定时器计数频率
- tmp = (tmp * ms) / 1000; //计算所需的计数值
- tmp = 65536 - tmp; //计算定时器重载值
- tmp = tmp + 12; //补偿中断响应延时造成的误差
- T0RH = (unsigned char)(tmp>>8); //定时器重载值拆分为高低字节
- T0RL = (unsigned char)tmp;
- TMOD &= 0xF0; //清零 T0 的控制位
- TMOD |= 0x01; //配置 T0 为模式 1
- TH0 = T0RH; //加载 T0 重载值
- TL0 = T0RL;
- ET0 = 1; //使能 T0 中断
- TR0 = 1; //启动 T0
- }
- /* T0 中断服务函数,执行 300ms 定时 */
- void InterruptTimer0() interrupt 1{
- static unsigned char tmr300ms = 0;
- TH0 = T0RH; //重新加载重载值
- TL0 = T0RL;
- tmr300ms++;
- if (tmr300ms >= 30){ //定时 300ms
- tmr300ms = 0;
- flag300ms = 1;
- }
- }
细心阅读程序的同学会发现,程序在进行 A/D 读取数据的时候,共使用了两条程序去读了 2 个字节:I2CReadACK(); val = I2CReadNAK(); PCF8591 的转换时钟是 I2C 的 SCL,8 个SCL 周期完成一次转换,所以当前的转换结果总是在下一个字节的 8 个 SCL 上才能读出,因此我们这里第一条语句的作用是产生一个整体的 SCL 时钟提供给 PCF8591 进行 A/D 转换,第二次是读取当前的转换结果。如果我们只使用第二条语句的话,每次读到的都是上一次的转换结果。