开关稳压器的基础

近年来,开关稳压器由于其功率转换效率高或转换可调性而被许多设备所利用,成为电源的主流。过去,一说到开关电源便想到购买模块或单元等成品,近年来,则可提供多种多样的开关电源用IC,使设计者得以致力于电路基板上编入开关电源的on-board设计。但同时,与线性稳压器不同的开关电源电路所拥有的各种探讨事项将成为设计者的一大课题也是不争的事实。

本项将以降压型开关稳压器为题材来说明其工作或功能等基础。

开关稳压器的种类

开关稳压器有许多种类,分类方法也视其观点而各有不同。在这里,姑且从输入电源的种类开始,以电路方式进行主要分类。首先,输入电源可以利用DC(直流)或AC(交流)分成DC/DC转换器和AC/DC转换器(参考图27)。这里记载的“DC/DC转换器”表示以输入电源身分将DC电压转换成DC电压后输出,而“AC/DC转换器”则表示以AC输入转换成DC电压。
fig_27.gif
图 27:依据电路方式分类

DC/DC转换器和AC/DC转换器各自都有非绝缘型和绝缘型。绝缘型为输入(一次)和输出(二次)可绝缘的类型,绝缘主要可利用变压器。在工业设备或医疗设备等要求发生故障时具有高安全性的设备中,标准上使用。非绝缘型在输出输入间有导通,尤其是同一电路基板内无须绝缘的电压转换等几乎都为非绝缘型。

架构非绝缘型及绝缘型的转换器由于各自有适合的电路方式,因此可依据电路方式分类。图27所记载的同步整流式或反激式相当于电路方式。除了构造零件或电路规模不同外,工作原理当然也不同。

其次,依据功能和操作方法的分类。图28为其概述,而且,从这里开始便进入DC/DC转换器的话题。AC/DC转换器由于会在初段将AC整流-平滑后基本上以DC/DC转换器工作,故以后请一视同仁思考。
fig_28.gif

图 28:依据功能和工作方式分类

DC/DC转换方面,可以对输入电压进行降压或升压。此外,应用上也可进行升降压、反转等转换。根据所需功能,例如需要选择降压转换器时,电路构造和所选的IC是不同的,
控制输出电压的工作模式有PWM(Pulse Width Modulation:脉冲宽度调制)和PFM(Pulse Frequency Modulation:脉冲频率调制)。PWM的开关周期(频率)恒定且为通过调整ON和OFF时间比进行稳定化的模式,而PFM则是ON或OFF时间恒定的频率变更方法。详细内容后述。

而且,为使输出稳定化的反馈控制方式有电流模式、电压模式、迟滞等,这几种详细内容也将后述。

开关稳压器由这些组合构成,可通过探讨用途、输出输入条件、设计规格或性能目标、以及成本或尺寸等限制事项来选择最佳产品,为此,必须事先了解各方式的特征和优缺点。

优点和缺点、与线性稳压器的比较

   fig_29.gif
图 29

开始电源设计时,如果大概的规格已定,其次便是进入选择开关稳压器或线性稳压器的作业。为满足要求规格虽然有的情况必须选择其一,不过两者皆可的例子也不少。此时,须以各自的特征和优缺点为主进行探讨。图29为开关稳压器的优点和缺点,而图30则试着与线性稳压器做总比较。

最大的优点,是可以自由转换。虽然降压最常被利用,不过也可从电池等低电压升压、使其从正电压反转来制作负电压、或3.3V般输入跨越输出电压时也可从锂离子二次电池(例:4.2V~2.8V)升压。

其次,是效率高。虽然也视种类而定,不过最大效率可达95%左右。但是,开关稳压器的效率因负载电流的大小而变。基本上,负载电流变小时效率会大幅度下滑。对此,近年待机功耗降低要求日趋严格,成了开关稳压器的课题。

缺点在于加入电容器等能动零件、二极管或晶体管等半导体零件后需要磁性零件、零件数本身增加且设计复杂。近年来开关电源用IC由于必要电路的集成化升高,可简单调整的技巧进步,故比以前更能简单设计电源。尽管如此,比线性稳压器复杂是不争的事实。此外,由于进行开关工作,因此会出现相关噪声或纹波。噪声多的话应用上便难以使用也是事实之一。此外,是否合乎EMI(电磁干扰)限制等也须花工时评估。

最后,在成本方面,如果只单纯谈论IC单体或构造零件的话,无论如何都比线性稳压器来得高。但是,线性稳压器如果也伴随散热板的话也将考虑面积或体积,因此欲处理的功率变大时,开关的总成本有时就会比较便宜。在设计上,详细探讨各优缺点后选择符合目的的方式是一大关键要点。
fig_30.gif
图 30:与线性稳压器的比较

降压型开关稳压器的工作原理

前项中已经说明开关稳压器可以进行等降压、升堥、升降压、反转等转换,现在接着以最广泛利用的降压型开关稳压器为例说明工作原理。

图31是降压DC/DC转换的概略电路,是借着开关将DC电压VIN做时间分割后以电感和电容器使其平滑化来转换成所希望的DC电压。
fig_31.gif
图 31

fig_32.gif
图 32

DC/DC转换的工艺简单来说,就是将DC暂时转换成AC使其平滑后再返回DC。举PWM工作的例来说明,以S1=ON/S2=OFF将VIN供电时间设为25%、以S1=OFF/S2=ON将0V(GND)状态设为75%的脉冲周期,当该脉冲平均化时将为25%的DC。如果VIN为10V,则Vo将为25%的2.5V。对此,如果以面积来思考的话,想必就容易想象多了(参考图33)。

fig_33.gif
图 33

实际的PWM由于被平均化的输出负载电流会变动,故ON时间会一定程度一直依赖负载电流来上下移动电压。如此一来,稳压器输出下降时会增加ON时间,从输出传送更多的能源而使输出电压上升。输出电压充分恢复的话,接着便会缩短ON时间来停止输出上升。

开关的情况则如所见,可以想成从输入只截取输出所必要的功率。相对的,线性稳压器由于不进行ON/OFF,因此呈现占空比100%,也就是始终保持输入状态。同样的,如果10V变为2.5V时,符合其中间7.5V差数的功率必须被作为热能舍弃。而开关性稳压器效率高的理由就在于此结构的区别。

降压型异步(二极管)整流式开关稳压器的电路和工作

图34比图31更加具体。该电路也称为异步整流式或二极管整流式。S1为开关(通常为晶体管),S2虽然被置换成二极管但工作相同。红色为S1于ON时的电流路径,绿色为OFF时的路径。

fig_34.gif
图 34

图35是各零件的电压及电流波形。之前曾说明:“DC/DC转换的行程,将DC先转换成AC来平滑波形。”这里要说明“AC(交流:周期的振幅与正负变化)是怎么转换的?”用电感的波形来看就知道AC电怎么产生。

fig_35.gif
图 35

这是题外话,电感的电流波形斜率是因为电感电流的变化率与电压成比例,故施加电压时电流会以恒定斜率増加的缘故。可以用V=L×(dI/dt)来表示。
fig_36.gif
图36:异步整流降压电路和开关ON时的具体电流路径

fig_37.gif
图37:开关OFF时的电流路径

fig_38.gif
图38

图35电路置换成实际电路后为图36和37。开关S1以MOSFET置换,S2则被置换成肖特基二极管。图35也显示被省略的比较电路和控制电路。想必有人早已察觉,该电路是在线性稳压器工作原理中已说明的反馈控制电路输出电压被引入内部的比较电路,与基准电压做比较。在这里虽然以比较电路来表现,不过与线性稳压器的误差放大器相同。线性稳压器中误差放大器的输出会直接控制输出晶体管后连续进行电路控制,而开关稳压器中误差放大器的输出则会被置换成开关(晶体管)ON/OFF时间(占空比)的控制。

同步整流型和异步整流型的区别

DC/DC转换器的非绝缘型降压开关稳压器有前项所说明的异步整流(二极管)式和同步整流式。异步整流式是较早被使用的方式,就开关稳压器而言电路简单但效率却超过80%左右。其后,笔记本电脑等电池驱动且需要较大功率的应用开始要求更高效率,于是可获得高效率的同步整流式开关稳压器用IC被陆续开发,控制或电路极为复杂的同步整流式变得容易设计,逐渐成为主流。同步整流式最大可以获得近95%的效率。

图39和40是两种方式的电路概述和工作。
fig_39.gif

fig_39_2.gif
图39

fig_40.gif

fig_40-10.gif
图40

fig_41.gif
图41

如图所示,区别在于异步整流式于下侧开关使用二极管,而同步整流式则与S1同样为晶体管。异步整流式通过上侧晶体管的ON/OFF使电流流向或不流向二极管,对此,如前项所说。同步整流式虽然基本工作相同,但是下侧开关的ON/OFF也由控制电路进行。如果双方同时为ON,则电流将从VIN直接流向GND,故双方必须制造OFF时间,所谓停滞时间的时序等进行复杂的控制。不过,同步整流式的所以效率比异步整流式好,是因为下侧开关使用晶体管(尤其是MOSFET),大幅改善在二极管所发生的损耗,而且还可在最佳时机进行操作。

有关各方式的损耗和效率,再稍微说明一下。任何电路都通过开关流动电流,故会因开关而有损耗,以致影响效率。二极管的损耗于正向电压VF、晶体管时将变成饱和电压或ON电阻。二极管的VF通过电流増加,即使是低VF的肖特基二极管,1A时的VF也将为0.3~0.5V左右。与之相对,例如Nch-MOSFET的ON电阻极低至50mΩ左右,如果计算下降电压的话,可知1A将为50mV,远低于二极管的VF。

尤其类似从12V降压至1.5V等高降压时,下侧开关的ON时间会变长,占周期的近90%。异步整流式中,由于下侧开关为二极管,故约90%期间会伴随VF分损耗的工作,即1.5V的输出会伴随0.5V多的损耗,对效率的影响极大(参考图41)。

另一个大区别在于轻负载时会有工作。图42橘色和绿色的箭头表示轻负载时异步整流式(橘)和同步整流式(绿)的电感电流。电感电流如图所示,通过开关变成三角波。当负载电流变得非常少时,电感电流会下降至零交叉级。在此状态下,异步式为二极管只能朝一方向流动电流,因此没有如橘色波形般进入负领域的波形电流,电流波形呈具有零期间之间断状态,此称为不连续模式。同步式由于晶体管,故可逆流,使负领域电流持续,此工作称为连续模式。

fig_42.gif
图42

如果为不连续模式,则开关电压将发生振铃,高谐波噪声将被释出。同步式通过维持连续的电感电流而使稳定的工作继续。但是,反向电流由于须从输出电容器供给,故效率稍低。
整体而言须探讨电路的复杂性、成本、效率、振铃导致之高谐波噪声后进行权衡,判断哪一方式最适当后再选择。

改善同步整流式的轻负载时效率的功能

前项已经说明,同步式在轻负载时效率会因反向电流而降低。相信大家都希望难得效率高的同步式在轻负载时也能有高效率。尤其是最近,降低待机功耗已成为一大趋势。最轻负载时也即供电中电路处于关断状态的时。如果电源也能关断的话再好不过,只是必须持续给予微小功率,而此时效率低也是一大问题。

不连续模式的增加

同步整流式轻负载时效率改善的方法之一为轻负载时增加以不连续模式工作的功能。想法非常简单,也就是检测出电感电流下降至零附近后将下侧晶体管设为OFF使其不发生逆流(图43)。
fig_43.gif
图43

只是,此方法并非完美无缺。此时,电感的晶体管侧的节点由于会呈现与开放相同状态,故输出电容器的放电须依赖负载电流,轻负载时电压下降的时间将变长。其结果,有时将导致开关速度下降,纹波电压増加。

此外,上侧晶体管不会ON到输出电压下降,故开关周期会改变。考虑到噪声的过滤时,噪声频率变动是问题所在,与效率之间也须进行权衡。

从PWM模式切换到PFM模式

这里还有另一个方法。过去曾经以PWM为前提进展话题,而此方法则是将PWM和PFM分开使用。负载重时PWM工作、负载轻时将控制切换为效率高的PFM。PWM是最普遍的电压控制方法,由于频率恒定,即使重负载时和轻负载时ON/OFF的时间比不同,其开关次数也会相同。因此自我功耗不会改变,故轻负载时开关损耗是主要损耗而效率降低。这是PWM模式于低负载时通常效率会急剧降低的理由。

fig_44.gif
图44

PFM因ON时间恒定使OFF时间变动、或OFF时间恒定使ON时间变化(图44为ON时间恒定例)。换句话说,接下来一直到ON之前的时间会改变。轻负载时功率增加供给会变少,故ON周期会变长而每单位时间的开关次数会减少,开关损耗减少可维持效率(参照图46)。

fig_46.gif
图46

fig_45.gif
图45

如此看来单纯设定为PFM方式似乎比较好,不过变为ON的周期,也就是频率一变动则起因于开关的噪声将为不定期而无法特别指定频率,故噪声的过滤将变得非常麻烦。也就是难以去除噪声。此外,频率一进入可听带20kHz时有可能会发生声响等对音响设备的S/N造成影响。关于噪声,PWM可以说有其容易处理的一面。因此,在这里也有必要进行权衡。

控制方式 (电压模式、电流模式、迟滞控制)

最初已经说明开关稳压器的反馈(feedback)控制方式有电压模式、电流模式、迟滞控制等3种。开关稳压器也与线性稳压器同样通过反馈电路进行稳定化。在这里,加以详细说明。由于各有优点和缺点,因此该选择何种方式必须考虑平衡点。

电压模式

电压模式控制是最基本的方式。透过反馈环路只反馈输出电压。通过以误差放大器和基准电压做比较后所差距的电压再进一步与三角波做比较,决定PWM讯号的脉冲宽度来控制输出电压。此方式的优点在于纯电压的反馈环路可进行较简单的控制、可缩短ON时间、抗噪好。其缺点是,相位补偿电路复杂可能使设计变麻烦。

fig_47.gif
图47

电流模式

电流模式控制是对电压模式控制的改良,是以检测电路电感电流的方式取代电压模式控制使用的三角波。或检测晶体管的电流取代电感电流、通过电流检测电阻进行检测。反馈环路分电压环路和电流环路两者,控制虽变得比较复杂,不过有相位补偿电路设计大幅简单化的优点。其他优点还有反馈环路的稳定性高,负载瞬态响应比电压模式快速。其缺点是,因电流检测敏感故所以噪声弱,不过最近此部分因内置于IC而问题变少。

fig_48.gif
图48

迟滞控制(纹波控制)

迟滞控制方式是引脚对需要更高速负载瞬态响应的负载,例如CPU、FPGA等电源要求而开发的方式。因其检测并控制输出的纹波,故也称为纹波控制方式。该方式,不通过误差放大器而以比较器直接监控输出电压。检测超过或未超过已设定的阈值后,由比较器直接控制开关ON/OFF。方法有两种,一为在ON时间固定下检测不超过的阈值,一为在OFF时间固定下检测超过的阈值。

fig_49.gif
图49

该方式的优点,在于由比较器进行直接控制,故瞬态响应极为高速、无须相位补偿。其缺点是,虽然有开关频率会变动、抖动大、检测输出纹波需要ESR(等价串联电阻)较大的输出电容器,随着技术革新,采用此方式的IC逐渐増加。例如,在IC内部反馈原本出现于输出的纹波而得以使用ESR小的陶瓷电容器,使输出纹波变小。

fig_50.gif
图50

保护功能/可编程功能

DC/DC转换器除了理所当然向电路供给电源外,确保电路安全也很重要。近年,DC/DC转换器用的IC几乎都搭载了被认为必备的保护功能。有些保护功能可以由用户调整阈值等支持各种条件。此外,电源电路要支持使用CPU或FPGA等的复合电源的装置对电源接入的顺序和时序需求。为此,具备可编程功能的电源IC。虽然外置电路也可以实现IC所搭载的保护功能或可编程功能,但其设计比电源IC要复杂得多,且需要增加许多零件,并不可行。在这里,介绍代表性保护功能和可编程功能的概述。

保护功能:热关断

热关断是IC的结温达最大额定,就是Tj max的前后时关断电路工作的构造。工作的结温因IC而异,大多被设定在Tj max的前后。关断后的工作模式有自动恢复型和闭锁型2种。
fig_51.gif
图51

自动恢复型当温度上升至所设定的阈值时关断,温度开始下降至设定值时则IC的工作将自动恢复。闭锁型即使温度下降IC的工作也会处于关断。要使IC再次工作必须重新输入IC的电源。

此两种的关断后的工作模式须在考虑应用的安全设计后选择使用。另外,ROHM的IC由于Tjmax是150℃,所以再加25℃的175℃大多会热关断。重要的确认事项是,热关断功能是为了防止损害时IC本身冒烟或出火的功能,不是保护供电基板或设备的功能。

保护功能:防止低电压误动作

防止低电压误动作功能(Under Voltage LockOut)大多取英文头字称为UVLO。当输入电压在IC的输入电压范围以下时,IC会停止输出来保护本身的输出晶体管或负载。当输入电压在IC的工作电压以下时,电路将产生无法预料的工作,在送出异常输出前强制停止电路工作。几乎所有电源IC都搭载UVLO以防止无法预料的故障。

fig_52.gif
图52

保护功能:过电流保护

过电流保护是在输出电流高于阈值时限制输出电流来防止IC或负载烧毁的功能。如果监控线圈电流后检测超过限制值时,则通过缩短上侧开关的ON时间降低输出来限制电流。虽然过电流状态持续时IC会继续限制电流,不过请记住,限制值的电流,也就是过电流仍会继续流向负载。电流值恢复正常时,IC也会恢复正常工作。
fig_53.gif
图53

fig_54.gif
图54

保护功能:短路保护

短路保护大多与过流保护搭配使用,因此有些IC干脆不加以区分而作为过流保护的功能。前述过电流如果进一步变多的话,保护电路将进一步降低输出电压。当处于规定电压以下的状态到达某时间以上时,保护电路将停止开关工作变为零。此保护功能也有自动恢复型和闭锁型,自动恢复型在数百毫秒后会再度开始开关使电压输出。此时,如果过电流原因被排除且过电流不流动的话则为正常工作,如果再度进入过电流状态的话输出将反复ON/OFF。闭锁型将使输出保持在零状态,直到重新输入IC电源才会恢复。这也和热关断一样,必须在考虑应用的安全设计后选择使用。

保护功能:过电压保护

电源线有可能因某些原因短路使大电流流动后再度恢复时输出电压瞬间过冲,尤其是CPU等IC由于工作电压和绝对最大额定的幅度小,故有可能会因过冲的过电压而破坏IC。过电压保护将监控输出电压,如果检测出规定值以上的电压时会将上侧开关设为OFF并停止功率供给。但是,如果只是停止功率供给的话,电感所蓄积的电荷将被放出而使电压持续上升,因此将下侧开关设为ON后将电感的电荷释放至GND,防止输出上升。

fig_55.gif
图55

可编程功能:关断

关断功能是指将IC控制部的工作设为ON/OFF。当电路不需要功率时,而且为POL(Point Of Load:基板上只有一部电路或装置的电源)的话,通过与负载的要求连动进行关机,将有助于削减功耗或待机功率。

fig_56.gif
图56

可编程功能:软启动

软启动是为了防止启动时的浪涌电流而让输出电压的启动拥有时间常量使其上升的功能。必须注意的是,当浪涌电流产生时IC的过流保护会工作,有时会发生电源不启动(过热闭锁状态)的问题。软启动的时间常量分IC内部固定型和备有调整引脚可通过外置电容器设定的类型。

可编程功能:电源正常输出

电源正常是指当输出到达所设定的电压值时释出Flag的功能通过通知CPU电源启动没有问题,或与使能功能组合来排序多个电源的启动。图57是使用电源正常和使能让电源按照从电源1到电源3顺序启动的时序结构例。
    fig_57.gif
图57

    fig_58.gif
图58

可编程功能:跟踪

跟踪是可以设定多个电源启动顺序和时序的功能。通过使多个电源输出依据所要求的顺序启动,可确保电路或装置的安全。跟踪有同时跟踪、比例跟踪、偏置跟踪3种。

fig_59.gif
图59

同时跟踪是指所有电源同时为ON并以相同斜率启动,从低电压的电源依据顺序到达设定电压。这有助于以FPGA等启动低电压内核电源后,启动外围I/O电源的应用。

比例跟踪(Ratiometric)是指以各自不同的斜率启动。这是调整斜率不让浪涌电流大量流入各电源线去耦电容器的方法。

偏置跟踪是指边启动边维持各电源间偏置电压(电压差)的固定。该方法对有规定电源电压间差距的装置有效。

一般来说,要进行这些控制须使用可编程控制器IC或跟踪控制器IC。有些电源IC内置跟踪功能,可利用主动电源的输出电压来控制从动。

fig_60.gif
图60:使用可编程控制器IC控制例

fig_61.gif
图61:内置跟踪功能使用例

开关频率的考虑点

开关稳压器IC使用的开关频率从数十kHz到数百万Hz,最近有些甚至似乎以高频率工作。设计时须以几项条件为基本来选择频率。

第一点是重视效率或重视尺寸的问题。如果将开关频率调高,则外置的电感和电容器将使用较小的,尺寸必然会变小。因此,包含安装面积和高度在内的外形尺寸也会变小,有助于节省空间。不过,开关损耗会通过高速开关増加,故效率会降低几个百分比。尤其对小型便携设备,2个项目就算不想权衡也必须取得平衡使其优化。

fig_62.gif
图62:内置跟踪功能使用例

图63表格一般探讨事项和开关频率的关系。从部件尺寸和效率以外的项目来看,可以知道高开关频率较为有利。话虽如此,在应用上或许对某些事物而言是“讨厌的频率”。最常见的例子是AM收音机的的频带,约400kHz~1.8MHz左右。单纯来说,如果使用此范围的开关频率电源,感度和S/N会劣化。有效的回避方法是选择此频带以外的开关频率。

fig_63.gif
图63:内置跟踪功能使用例

如此一来非权衡不可,必须充分考虑应用或使用环境后再进入设计。可变更开关频率型的IC虽然很多,不过必须注意的是,如果要变更,除了频率之外,也必须重估电感或电容器等外置部件的常量。

Vin低于Vout时的动作

降压开关稳压器可将输入电压Vin转换为比Vin低的电压。然而,由于Vin的波动,Vin低于设置的Vout的情况也并非没有。下面介绍在这种条件下可能发生的动作。

当降压转换器的Vin低于Vout时的动作

降压开关稳压器的Vin>Vout为正常关系。严格来讲,Vout加上输入输出间的电压降之后的电压得到正常工作的Vin。例如,相对于3.3Vout的最小工作电压为3.8Vin。

但是,由于某些原因,Vin可能会在短时间内降至Vout以下。例如,因共享相同Vin的其他元器件突然流入大电流而导致电压瞬间下降的情况等。

通常,当Vin低于Vout时,Vout也会下降,无法保持设置的电压。一般情况下,在一定程度之内,从下降的Vin中主要减去开关(晶体管)的电压降部分之后的电压被输出至Vout,但如果Vin进一步下降,则会导致工作异常,Vout可能会处于不稳定状态。这种状态不仅会致使所供电的元器件或系统运行不稳定,而且在某些情况下还可能导致损坏。为了避免这种情况,最近的降压开关稳压器IC大多数都具有被称为“UVLO(Under Voltage Look Out)”的输入电压下降时的保护功能,通常当Vin低于设置的UVLO的阈值时,IC会关断,并在Vin恢复正常后重新启动以保护系统。

在这里要指出并说明的是Vin在UVLO不工作的程度低于Vout,Vin恢复时可能会发生的动作。下面用图来说明。

右图是表示旨在使同步整流降压转换器的输出稳定的反馈电路以及Vin下降后的Vout动作示意图。

使输出稳定是反馈电压Error Amp根据电路图中Vo连接的分压电阻,与基准电压进行比较来控制开关。当输出电压低于设置值时,Error Amp的输出Error out变为High,通过开关控制电路,将高边开关(晶体管)ON、低边OFF。这样,由Vin供电,当Vo上升达到设置电压时执行反向动作,进行反馈控制以使Vo保持设置电压。
D6-2_fig1.gif

左侧的波形图是当输入电压Vin在不低于输出电压Vout(电路图中为Vo)的范围内下降时的动作。通常,即使Vin变化,Vout也几乎不会受影响。

D6-2_fig2.gif

中间的波形图就是本文的话题“当Vin低于Vout设置值时”可能发生的动作。条件是虽然Vin低于Vout的设置值,但还没有下降至UVLO工作的程度(红线)。如前所述,当Vin低于Vout设置值时,Vout的动作大致为Vin-开关的电压降程度。从反馈电路的角度看,这种状态是Vout低于设置值的状态,Error Amp检测到这种状态,并且输出Error out变为High,高边开关变为ON、低边开关变为OFF,处于给输出供电的状态。

在这种情况下,如果Vin迅速扩展,则来自高边开关的供电会急速增加,Vout也会突然上升,可能会在很短的时间内大大超出设置值。其后,检测到这种状态的Error Amp将高边开关OFF,执行降低Vout的控制,使Vout恢复设置值。这种现象是与Vin恢复的陡峭程度和Error Amp的响应速度等因素紧密相关的。由于Vout的上升如果超过供电的元器件等的额定值,可能会造成损坏,因此应该在实际使用条件下确认这种现象是否会发生。如果可能存在问题,则需要重新确认Vin和电源IC的响应特性。

顺便提一下,右侧的波形表示当Vin低于UVLO的阈值时,因UVLO工作而关断电源IC,当Vin恢复时Vout随着软启动而重新启动。

补充-保护功能: 输出预偏置保护

本文是“开关稳压器的基础”的“保护功能/时序功能”相关的补充。近年来的DC/DC转换器IC中,配备该保护功能的越来越多。

输出预偏置保护

DC/DC转换器启动时的Vout电压基本上假设为零伏,但实际上由于电路构成和短时间内的重新启动等因素影响,启动前Vout可能存在电压,也就是说可能并非为零。在很多情况下,是连接于Vout的Cout、或负载(供电的IC等)的Cin等残留有电荷,或者来自其他路径的漏电流或来自上拉电阻的偏置等导致的。

在存在这些预偏置的状态下,如果同步整流降压转换器的低边开关(MOSFET)导通,则可能会吸收过大的电流,从而导致MOSFET损坏。为了防止这种情况发生,使用预偏置保护功能来控制低边开关在输出电压高于预偏置电压之前不导通。
D6-3_fig1.gif
                                                                                                                                                

补充-同步整流降压转换器工作时的电流路径

本文是“开关稳压器的基础”的“降压型开关稳压器的工作原理”相关的补充。在“降压型开关稳压器的工作原理”中,介绍了“降压型异步(二极管)整流式开关稳压器的电路和工作”。作为这篇文章的补充,在此介绍同步整流式降压转换器工作时的电流路径(可以说是近年来的高效率DC/DC转换器的标配)。
  
同步整流降压转换器工作时的电流路径

在前述文章中,以异步(二极管)整流降压转换器为例介绍了电流路径。首先需要了解的是,异步整流和同步整流在工作时的电流路径基本相同。这是因为同步整流是将异步整流的低边开关二极管变更为晶体管之后的电路方式。接下来将在这个前提下来对同步整流降压转换器的电流路径和注意事项进行解说。

■高边开关“导通”时的电流路径
D6-4_fig1.gif


  • 上图的红色线表示高边开关(实际上是MOSFET)Q1导通时转换器中流过的主要电流。
  • CBYPASS是高频用的去耦电容器,CIN是大容量电容器。
  • 高边开关Q1导通后的瞬间流过的大部分急剧的电流来自CBYPASS,次其次来自CIN。
  • 变化缓和的电流来自输入电源。

■低边开关“导通”时的电流路径
D6-4_fig2.gif


  • 同步整流方式是高边和低边开关交替ON/OFF。
  • 上图的红色线表示高边开关Q1关断、低边开关Q2导通时的电流路径。
  • 输出电压Vo经由电感和输出电容器CO变得平滑。
  • 降压型转换器是在输出端串联插入电感的,因此输出电容器的电流比较平滑。

■开关电流波形下图表示开关电流波形和电感电流的波形。IHG是高边开关的电流,ILG是低边开关的电流。请对照上述说明进行确认。
D6-4_fig4.gif
电感电流IL是IHG和ILG的合成电流,输出电流IO是IL的平均值。

■开关电流和PCB布局的注意事项下图中的蓝线表示前述电流路径所示的开关ON/OFF时流过的电流的差分。
D6-4_fig3.gif
该电流具有以下特点:

  • 每当高边开关Q1从OFF向ON、从ON向OFF变化时,蓝线部分的电流会急剧变化。
  • 该系统变化急剧,因此出现含有较多高次谐波的波形。

所以,在PCB(电路板)布局时,必须注意这种差分,并根据理论进行布局。关于PCB布局,请参考设计篇的“DC/DC转换器的PCB板布局”。

来源:techclass.rohm