负反馈在低频放大电路中的应用非常广泛,采用负反馈可以改善放大器的工作性能。
在其他科学技术领域中,它的应用也是很多的。例如自动调节系统,就是通过负反馈来实现的。
因此,研究负反馈就具有普遍意义,要研究应用负反馈,就必须首先熟悉负反馈的四种类型,并掌握其判别方法。
1.判别法介绍:
根据负反馈的四种类型:并联电压负反馈、串联电压负反馈、并联电流负反馈、串联电流负反馈。
在讲授完其定义后,可以按下述方法判别负反馈的类型。
(1)电压反馈和电流反馈的判别
若反馈信号和输出信号在放大电路上输出端引自三极管的同一极(如同是c极或同是e极)则为电压反馈,否则为电流反馈。
(2)并联反馈和串联反馈的判别
若反馈信号与输入信号在放大电路的输入端联接在三极管同一极(如同在b极)的为并联反馈,不在同一极(如输入信号接在b极,反馈信号接在e极)的则为串联反馈。
2.举例说明:
对下述四个例子分别用笔者的方法、假想短路法和定义法作以判别。
举例1:图1中,在放大电路输出端,反馈电阻RF与负载RL均接自三极管T的C极,为电压反馈;在放大电路输入端,反馈电阻RF与输入信号联接在三极管T的b极,为并联反馈,因此图1的反馈类型为并联电压负反馈。
假想短路法:图1中,将负载RL交点短路后,图1中RF的右端接地,此时RF不再是联接输入与输出的反馈,反馈信号不存在了。因而,该反馈是依赖于输出电压的,是电压反馈。
定义法:在图1中,在放大电路输出端,RF与RL同时接于一点时,RF所取信号是电压信号,为电压反馈,在输入端,RF与输入信号同接于T的b极,反馈信号与输入信号在输入端以电流的形式相加减,为并联反馈。
6eb5b9611694ea3d64b7ef7aa4f565fbee3c5441.jpg939x458 39.3 KB
举例2:在图2所示放大电路中, 在输出端,RF与负载RL同时接于三极管T2的C极,为电压反馈;在输入端,RF与输入信号分别接于T1的e极和b极,为串联反馈。因而图2为串联电压负反馈。
假想短路法:在图2中,当负载 RL交流短路后,RF右端接地,此时RF不再是输出与输出之间的反馈,反信号不存在了。因此,该反馈是依赖于输出电压的,是电压反馈。
定义法:在图2中,在输出端,RF 与RL同时接于T2的c极,RF所取信号是电压信号,为电压反馈;在输入端,RF与Vi分别接于T1的e极和b极,则净输入Vbe=Vi—Vf,反馈信号与输入信号在输入端以电压的形式相加减,为串联反馈。
8f868a0980b9dd01b4300734b5ca9eeb832b7d4f.jpg821x510 32 KB
举例3:在图3所示放大电路中, 在输出端,RF与RL分别接于三极管T2的e极和c极,为电流反馈:在输入端,RF与输入信号同时接于三极管T1的b极,为并联反馈,因此,图3中RF为并联电流负反馈。
假想短路法:在图3中,将负载 RL交流短路后,RF不受影响,即它是不依赖于输入电压的,为电流反馈。
定义法:RL与RF在输出端分别 接于三极管的T2的c极和e极,即使负载交流短路(U0=0)也不会影响到接于e极的RF,故RF所取信号来自输出电流,为电流反馈,在输入端,RF与输入信号同时接于T1的b极,反馈信号与输入信号在输入端以电流的形式相加减,即Ib1=Ii—If为并联反馈。
举例4:在图4所示放大电路中,接于三极管T3的c极和e极,为电流反馈:在输入端,反馈信号与输入信号分别接于T1的e极和b极,为串联反馈,因此图4中RF为级间的串联电流负反馈。至于Re1、Re2、Re3则是同一级内的串联电流负反馈。
假想短路法:在输出端,将RL交 流短路,不影响RF,因此RF的存在与输出电压无关,为电流反馈。
定义法:在图4放大电路的输出 端,RL与RF不接于三极管T3的同一极,即使交流短路(UO=0)也不会影响RF,故RF所取信号来自输出电流,为电流反馈,在输入端,RF与输入信号分别接于T1的e极和b极,则反馈信号与输入信号在输入端以电压的形式相加减,为串联反馈。
3.结论:
对于上述四个例子,笔者分别用自己的方法,假想短路法、定义法作了判别。从判别过程中不难看出,笔者的方法简单、快捷、准确。不管是对单级、两级,还是多级放大电路都不失为一种好方法。
作者:鲁东大学 张帅