反激式转换器工作原理
图1为一个最简单的反激式转换器拓扑结构,并且包含以下寄生元件:
如初级漏电感、MOSFET的寄生电容和次级二极管的结电容。
图1包含寄生元件的反激式转换器拓扑图
该拓扑源自一个升降压转换器,将滤波电感替换为耦合电感,如带有气隙的磁芯变压器,当主开关器件MOSFET导通时,能量以磁通形式存储在变压器中,并在MOSFET关断时传输至输出。由于变压器需要在MOSFET导通期间存储能量,磁芯应该开有气隙,基于这种特殊的功率转换过程,所以反激式转换器可以转换传输的功率有限,只是适合中低功率应用,如电池充电器、适配器和DVD播放器。
反激式转换器在正常工作情况下,当MOSFET关断时,初级电流(id)在短时间内为 MOSFET的Coss(即Cgd+Cds)充电,当Coss两端的电压Vds超过输入电压及反射的输出电压之和(Vin+nVo)时,次级二极管导通,初级电感Lp两端的电压被箝位至nVo。因此初级总漏感Lk(即Lkp+n2×Lks)和Coss之间发生谐振,产生高频和高压浪涌,MOSFET上过高的电压可能导致故障。
反激式转换器可以工作在连续导通模式(CCM)(如图2)和不连续导通模式(DCM)(如图3)下,当工作在CCM模式时,次级二极管保持导通直至MOSFET栅极导通,而MOSFET导通时,次级二极管的反向恢复电流被添加至初级电流,因此在导通瞬间初级电流上出现较大的电流浪涌;当工作在DCM模式时,由于次级电流在一个开关周期结束前干涸,Lp和MOSFET的Coss之间发生谐振。
图2 连续导通模式
图3 不连续导通模式
图4显示了开关电源工作在DCM模式,实测的MOSFET电压和电流工作波形,除了可以看到MOSFET在开通和关断的过程中,均产生比较大的电压和电流变化,而且可以看到MOSFET在开通和关断的瞬间,产生一些震荡和电流尖峰。
如图1所示的包含寄生元件的反激式转换器拓扑图,其中Cgs、Cgd和 Cds分别为开关管MOSFET的栅源极、栅漏极和漏源极的杂散电容,Lp、Lkp、Lks和Cp分别为变压器的初级电感、初级电感的漏感、次级电感的漏感和原边线圈的杂散电容,Cj为输出二极管的结电容。图5为反激变换器工作在DCM工作模式时,开关管分别工作在(a)开通瞬间、 (b)开通阶段、 (c)关断瞬间和(d)关断阶段时,所对应的等效分析电路,Rds为开关管的漏源极等效电阻。
图5 反激变换器在DCM模式开关管工作在各阶段对应的等效分析电路
在开关管开通瞬间,由于电容两端电压不能突变,杂散电容Cp两端电压开始是上负下正,产生放电电流,随着开关管逐渐开通,电源电压Vin对杂散电容Cp充电,其两端电压为上正下负,形成流经开关管和Vin的电流尖峰;同时Cds电容对开关管放电,也形成电流尖峰,但是此尖峰电流不流经Vin,只在开关管内部形成回路;另外,如果变换器工作在CCM模式时,由于初级电感Lp两端电压缩小,二极管D开始承受反偏电压关断,引起反向恢复电流,该电流经变压器耦合到原边侧,也会形成流经开关管和Vin的电流尖峰。
在开关管开通阶段,二极管D截止,电容Cp两端电压为Vin,通过初级电感Lp的电流指数上升,近似线性上升。
在开关管关断瞬间,初级电流id为Coss充电,当Coss两端的电压超过Vin与nVo(二极管D开通时变压器副边线圈电压反射回原边线圈的电压)之和时,二极管D在初级电感Lp续流产生的电压作用下正偏开通,Lk和Coss发生谐振,产生高频震荡电压和电流。
在开关管关断阶段,二极管D正偏开通,把之前存储在Lp中的能量释放到负载端,此时副边线圈电压被箝位等于输出电压Vo,经匝比为n的变压器耦合回原边,使电容Cp电压被充电至nVo(极性下正上负),初级电感Lp两端的电压被箝位至nVo。当Lp续流放电结束后,D反偏截止,Lp和Coss、Cp发生谐振,导致Cp上的电压降低。
反激开关MOSFET 源极流出的电流(Is)波形的转折点的分析。
很多工程师在电源开发调试过程中,测的的波形的一些关键点不是很清楚,下面针对反激电源实测波形来分析一下。
问题一,一反激电源实测Ids电流时前端有一个尖峰(如下图红色圆圈里的尖峰图),这个尖峰到底是什么原因引起的?怎么来消除或者改善?
大家都知道这个尖峰是开关MOS开通的时候出现的,根据反激回路,Ids电流环为Vbus经变压器原边、然后经过MOS再到Vbus形成回路。本来原边线圈电感特性,其电流不能突变,本应呈线性上升,但由于原边线圈匝间存在的分布电容(如下图中的C),在开启瞬间,使Vbus经分存电容C到MOS有一高频通路,所以形成一时间很短尖峰。
经分析,知道此尖峰电流是变压器的原边分布参数造成,所以要从原边绕线层与层指尖间着手,可以加大间隙来减少耦合,也可以尽量设计成单层绕组。
例如变压器尽量选用Ae值大的,使设计时绕组圈数变少减少了层数,从而使层间电容变小。也可减少线与线之间的接触面,达到减少分布电容的目的。如三明治绕法把原边分开对此尖峰有改善,还能减少漏感。当然,无论怎样不能完全避免分布电容的存在,所以这个尖峰是不能完全消除的。并且这个尖峰高产生的振荡,对EMI不利,实际工作影响倒不大。但如果太高可能会引起芯片过流检测误触发。
所以电源IC内部都会加一个200nS-500nS的LEB Time,防止误触发,就是我们常说的消隐。
问题二,开关MOS关端时,IS电流波形上有个凹陷(如下图红色圈内的电流波形的凹陷)这是怎么回事?怎么改善?
说这个原因之前先对比下mos漏极电流Id与mos源极电流Is的波形。
实测Id波形如下
实测Is波形如下
从上面的这两个图中看出,ID比IS大一点是怎么回事?其实Is 是不等于Id的,Is = Id+Igs(Igs在这里是负电流,Cgs的放电电流如下图),那两点波形,就容易解释了。
Id比Is大,是由于IS叠加了一个反向电流,所以出现Is下降拐点。显然要改善这个电流凹陷可以换开关MOS管型号来调节。
看了上面Id的电流波形后问题又来了,mos关断时ID的电流为何会出现负电流?如下图
MOS关断时,漏感能量流出给Coss充到高点,即Vds反射尖峰的顶点上。到最高点后Lk相位翻转,Coss反向放电,这时电流流出,也就是Id负电流部份的产生。