本帖最后由 techff 于 2021-3-29 11:44 编辑

SiC功率元器件的特征

SiC比Si的绝缘击穿场强高约10倍,可耐600V~数千V的高压。此时,与Si元器件相比,可提高杂质浓度,且可使膜厚的漂移层变薄。高耐压功率元器件的电阻成分大多是漂移层的电阻,阻值与漂移层的厚度成比例增加。因为SiC的漂移层可以变薄,所以可制作单位面积的导通电阻非常低的高耐压元器件。理论上,只要耐压相同,与Si相比,SiC的单位面积漂移层电阻可低至1/300。

Si 功率元器件为改善高耐压化产生的导通电阻増大问题,主要使用IGBT(绝缘栅极双极晶体管)等少数载流子元器件(双极元器件)。但因为开关损耗大而具有发热问题,实现高频驱动存在界限。由于SiC能使肖特基势垒二极管和MOSFET等高速多数载流子元器件的耐压更高,因此能够同时实现 “高耐压”、“低导通电阻”、“高速”。

此时,带隙是Si的约3倍,能够在更高温度下工作。现在,受封装耐热性的制约可保证150℃~175℃的工作温度,但随着封装技术的发展将能达到200℃以上。

以上简略介绍了一些要点,对于没有物理特性和工艺基础的人来说可能有些难,但请放心,即使不理解上述内容也能使用SiC功率元器件。

SiC肖特基势垒二极管

特征以及与Si二极管的比较

SiC肖特基势垒二极管和Si肖特基势垒二极管

下面从SiC肖特基势垒二极管(以下简称“SBD”)的结构开始介绍。如下图所示,为了形成肖特基势垒,将半导体SiC与金属相接合(肖特基结)。结构与Si肖特基势垒二极管基本相同,其重要特征也是具备高速特性。

而SiC-SBD的特征是其不仅拥有优异的高速性还同时实现了高耐压。要想提高Si-SBD的耐压,只要增厚图中的n-型层、降低载流子浓度即可,但这会带来阻值上升、VF变高等损耗较大无法实际应用的问题。因此,Si-SBD的耐压200V已经是极限。而SiC拥有超过硅10倍的绝缘击穿场强,所以不仅能保持实际应用特性且可耐高压。

SiC_2-1_sicsky.gif   


SiC-SBD和Si-PN结二极管

通过Si二极管来应对SBD以上的耐压的是PN结二极管(称为“PND”)。下图为Si-PN二极管的结构。SBD是仅电子移动,电流流动,而PN结二极管是通过电子和空穴(孔)使电流流动。通过在n-层积蓄少数载流子的空穴使阻值下降,从而同时实现高耐压和低阻值,但关断的速度会变慢。

尽管FRD(快速恢复二极管)利用PN结二极管提高了速度,但尽管如此,trr(反向恢复时间)特性等劣于SBD。因此,trr损耗是高耐压Si PN结二极管的重大研究项目。此时,开关电源无法对应高速的开关频率也是课题之一。

SiC_2-1_sipn.gif    
右上图表示Si的SBD、PND、FRD和SiC-SBD耐压的覆盖范围。可以看出SiC-SBD基本覆盖了PND/FRD的耐压范围。SiC-SBD可同时实现高速性和高耐压,与PND/FRD相比Err(恢复损耗)显著降低,开关频率也可提高,因此可使用小型变压器和电容器,有助于设备小型化。

以下是1200V耐压SiC-SBD技术规格的一部分。后续将针对主要特性进行介绍。

SiC_2-1_spec.gif
与Si-PND的反向恢复特性比较

面对SiC-SBD和Si-PND的特征进行了比较。接下来比较SiC-SBD和Si-PND的反向恢复特性。反向恢复特性是二极管、特别是高速型二极管的基本且重要的参数,所以不仅要比较trr的数值,还要理解其波形和温度特性,这样有助于有效使用二极管。

SiC-SBD和Si-PND的反向恢复特性的不同

首先,反向恢复或恢复是指二极管在呈反向偏置状态时,无法立即完全关断,有时会出现反向电流的现象。trr是其反向电流的流动时间。此时,前文提到SiC-SBD的trr比包含Si-FRD在内的Si-PND高速。下面我们来了解其原因和实际特性。

SiC_2-2_comptrr.jpg
简单地说,trr的速度和反向恢复特性的不同是因为二极管构造不同。这就需要谈到在半导体中移动的电子和空穴。先通过波形图来了解SiC-SBD和Si-PND反向恢复特性的不同。

右侧波形图为SiC-SBD和高速PND即Si-FRD反向恢复时的电流和时间。从波形图可见红色的SiC-SBD反向电流少,trr也短。顺便一提,本特性因为反向电流的损耗而需要进行研究探讨。

在这里,通过各二极管的断面图进行介绍。下图为Si-PND的偏置从正向偏置转换为反向偏置时电子和空穴的移动。

正向偏置时注入载流子,通过空穴和电子的重新结合使电流流动。如果是反向偏置的话,n层的空穴(少数载流子)会花些时间返回p层,到完全返回为止(一部分因为寿命而消失)均有电流流动。这就是反向恢复电流。

    SiC_2-2_revpn.jpg
    SiC_2-2_revsic.jpg
第2个图为SiC-SBD转换为反向偏置时的示意图。因肖特基势垒结构而不存在PN结,所以没有少数载流子,在反向偏置时n层的多数载流子(电子)只需要返回,因此只需要很少的反向恢复时间,其关断时间比PND明显缩短。

这种反向恢复时间的差异均因为二极管结构。因此,Si-SBD的反向恢复也是高速。然而,Si-SBD现状的耐压界限是200V左右,在比其更高的电压下不能使用。而使用SiC的话,可以做出超过600V的高耐压SBD。这就是SiC-SBD的一大优点。

下面是反向恢复特性的温度依赖性和电流依赖性相关数据。

20160628_graf.gif

上段的波形图和图表表示不同温度的不同反向恢复特性。Si-FRD的温度上升时载流子浓度也随之上升,因此需要相应的反向恢复时间。随着室温的增高,反向电流和trr也会变大。而SiC-SBD因为SiC本身基本上没有温度依赖性,所以反向电流特性基本没有变化。将trr的差制作了右上的图表,通过对两种Si-FRD的比较,发现SiC-SBD的trr基本上不存在温度依赖性。

下段的波形图表示与正向偏置时的正向电流IF的关系。由波形图可观察到SiC-SBD几乎不受影响。

最后,虽然前面表述为SiC–SBD几乎没有反向电流,在波形图里可明显看出SiC-SBD比Si-FRD少很多,但也不是一点没有。这是因为二极管中寄生的结电容带来的影响。因此,SiC-SBD与Si-PND相比,反向电流并不是零,而是明显减少。

与Si-PND的正向电压比较

前面对SiC-SBD和Si-PND的反向恢复特性进行了比较。下面对二极管最基本的特性–正向电压VF特性的区别进行说明。

SiC-SBD和Si-PND正向电压特性的区别

二极管的正向电压VF无限接近零、对温度稳定是比较理想的,但事实是不是零、并会受温度影响而变动。为了使大家了解SiC-SBD的VF特性,下面与Si-PND的FRD(快速恢复二极管)进行比较。

SiC_2-3_vfcompa.gif

下图是相对于SiC-SBD和Si-FRD的正向电流IF的VF特性图。是从25℃到200℃按8个级别的温度条件测量的数据。

SiC-SBD随着温度的上升,IF开始流动,VF有些下降,但因电阻上升,斜率变缓和,在正常使用范围的IF下,VF上升。

Si-FRD随着温度的上升,VF单纯地下降。如图中的线条轨迹所示,无论哪个温度,斜率基本相同,VF单纯下降。

这些特性取决于其各自的物理特性和结构,但也各有各的优缺点。刚才提到理想的二极管。那么,Si-FRD的VF随着温度升高而下降,传导损耗减少,看起来好像是好事,但随着VF的下降,IF增加,即使损耗略有下降,但发热増加量更胜一筹,甚至可能陷入VF下降、IF增加的热失控状态。

而SiC-SBD随着温度升高,VF变高,不会热失控。但是VF上升,因此具有IFSM(瞬间大电流耐受能力)比Si-FRD低的缺点。

来源:techclass.rohm