本文主要讲解芯片形成的过程。沙子是怎么变成芯片的?在开始介绍电的一系列基本概念和各种繁琐的公式之前,我想先解决一下我们大多数人一直以来的疑惑。但是,这个问题还是很难一言以蔽之,至少得用十几节来完成这本书所包含的所有知识。所以在本节中,我将重点回答最有趣和最重要的部分:沙子是如何变成晶体管的?
目录
Ⅰ 从砂到芯片--芯片形成过程 |
Ⅱ 什么是半导体 |
Ⅲ PN结和二极管 |
Ⅳ 金属氧化物半导体场效应晶体管(MOSFET) |
Ⅴ N+型半导体 |
Ⅵ 常见问题 |
Ⅰ 从砂到芯片--芯片形成过程
PN结是一种广泛存在于半导体器件中的结构。它实际上不是一个非常精确的结构。PN 结实际上是指在 P 型半导体和 N 型半导体的接触部分附近发生的耗尽的现象。
这里有很多术语,如果我从各种百科全书中提取一点点,组合起来的东西几乎是这样的。一开始,为什么二极管具有单向导电性,而三极管为什么可以放大电流?为什么 JFET 可以限制电流的问题一直困扰着我。
各大高校教材的问题是从来没有讲过详细的原理,即使讲了也看不懂,导致问题越来越多,公式、理论也很难记住。直到很久以前,我才终于明白他们的原则。为了便于大家理解后面的系列理论,第一部分会非常详细,为后续的学习打下坚实的基础。
Ⅱ 什么是半导体
让我们来谈谈什么是半导体。半导体是导电性能介于导体和绝缘体之间的材料。我们知道导体和绝缘体的区别在于导体中有大量的自由电子,而绝缘体中几乎没有自由电子。那么,纯硅晶能导电吗?
纯硅晶
上图中,蓝色实心球体为硅原子,蓝色空心球体为电子。硅原子是正四价的,所以一个原子周围有四个电子(8-4=4)。每个硅原子与周围的硅原子共享四个电子,形成八个电子的稳定结构。在这种情况下,纯硅晶体中几乎没有自由电子——电子被共价键牢固地束缚在一起,所以纯硅晶体是绝缘体。
那么我们如何增强硅晶体的导电性呢?第一种方法是增加自由电子。加上自由电子后,由于电子带负电,所以我们把带有自由电子的硅晶体称为N型半导体,其中“N”是“负”的缩写。添加自由电子的操作专业称为掺杂。聪明的学生可以从这个学期开始思考如何将自由电子添加到晶体中。
我们需要用比硅的价数更高的原子替换硅原子,这样这个原子周围就会有 9 个电子。这个额外的电子将成为自由电子并增强晶体的导电性。掺杂该步骤通常通过使用离子束在真空中轰击硅晶体来完成。离子将撞击一部分硅原子,并将所需的原子注入到离子实施中。
负半导体
什么原子的价数比硅高?磷作为杂质,含量非常低,可以将这些磷原子近似为晶体的一部分。在正常情况下,磷的额外电子留在供体原子附近。但是,一旦我们在半导体材料的两侧施加电压,由于八个电子的稳定性高于九个电子,Si和P原子都会“丢弃”电子,变成自由电子,从负极电池。跑到电池的正极。定向运动的自由电子产生电能。
自由电子的定向运动
既然我们知道“N”代表“负”,那么自然而然,“P”就代表“正”。在解释什么是P型半导体之前,我要问几个问题:
- (1)如何使硅晶还原电子?
- (2)我们使用的杂质应该更活泼还是更稳定?
- (3)杂质的性质是离硅近还是远?
- (4)什么样的杂质比较容易添加?
答案是第五元素硼。硼具有多种优良特性。首先,它是第三族的主要元素,所以它的最外层有三个电子,比硅少一个,所以掺杂在硅晶体中时,整个缺乏自由电子。其次,硼是第三主族中唯一与硅相似的非金属元素,与硅有很强的相似性。最后,硼是稳定的、重量轻的,并且很容易植入到硅晶体中。
将硼注入硅晶体
硼是一种黑色粉末状固体,所以我在这里用黑球代替了它。它旁边有一个虚线球。这是一个电子空穴,这意味着该位置缺少一个电子。所以我们可以想到这个洞。正充电。
我们称电子和空穴电荷载流子。它们带有自己的电荷,可以充当电流发生器。孔的概念可能太抽象了,但我们可以这样理解:把孔想象成一杯水中的气泡,杯子的重力势低,所以我们把它想象成电池的负极,杯底为正极。
然后我们将水分子视为电子。气泡上方的水分子会去到杯底,然后在原来的水分子所在的位置产生一个新的气泡,从而造成气泡向上移动的错觉。在电路中,电子也受到电压的影响来填充这个空穴。然后原始电子的位置被空穴代替。似乎空穴从正极移动到负极。
电荷载体
Ⅲ PN结和二极管现在我们终于可以谈谈 PN 结了。前面我们说过,PN结是一种存在于P型半导体和N型半导体之间的现象。
PN结
从现在开始,P型半导体的颜色将由空穴橙色代表,N型半导体的颜色将由电子蓝代表。
在P型半导体和N型半导体的接触面附近,N型半导体的电子被填充到P型半导体的空穴中,导致PN结中没有载流子。空穴对电子的吸引力仍然很大。在P型半导体的部分,空穴被电子填充,但P型半导体中所含的杂质是硼,硼外只有三个电子。
当空穴被填满时,硼周围有四个电子,又多了一个电子,所以整体带负电。同理,在N型半导体的部分,电子跑到P型半导体的空穴中,荧光粉周围少了一个电子,所以整体带正电。在该区域,电子填充所有空穴[1],导致没有自由移动的载流子携带电荷,因此电流不能很好地通过该区域。P型半导体和N型半导体单独时可以导电,但放在一起时则具有单向导电性,此时就形成了二极管。
二极管
我们将二极管的 P 形半导体部分称为阳极,将 N 形半导体部分称为阴极。这很容易理解。复习之前的知识:空从正极流向负极,电子从负极流向正极。P型半导体的空心和N型半导体的电子在正向电压的帮助下被挤压向PN结,使载流子在PN结的两侧重新获得并具有导电能力. 对于硅二极管,只要正向电压超过0.7V,PN结的宽度就会收缩得足够短,以允许电流通过二极管。
我已经用电路符号替换了上面的电池。相应地,二极管也有自己的电路符号,更长一些:
二极管电路符号
那么,如果我们对二极管施加反向电压会怎样?您可能会考虑电子和空穴的运动方向。想一想PN结的宽度会不会发生变化。这种变化对电流有什么影响?
向二极管施加反向电压
同样,空穴流向负极,电子流向正极,载流子远离PN结,不存在载流子的区域变大,PN结变宽,导致无电流流动,并施加反向电压。电流越大,通过二极管的电流越小。因此,二极管具有单向导电性,只能允许电流从阳极流向阴极。[2]
电流电压图
上图是电流-电压图,显示了在不同电压下可以通过二极管的电流。图中红线代表硅二极管,蓝线代表锗二极管。铌和硅一样,也是一种很好的半导体材料。二极管有一个称为阈值电压的值。高于此值,二极管开始导通。对于硅二极管,该值为 0.7V。对于锗二极管,该值为 0.2V [3]。还有一个值叫做击穿电压。这个值我们讲整改的时候会提到。
做完这些准备工作,我们终于可以聊聊晶体管了。CPU中有数十亿个晶体管,但是这数十亿个晶体管的结构完全相同,只是连接方式发生了变化。CPU使用的晶体管可以有自己的名字:MOSFET。
Ⅳ 金属氧化物半导体场效应晶体管(MOSFET)
1926年,当国民政府发起的北伐如火如荼之际,在大洋彼岸的美国,物理学家朱利叶斯·埃德加·利连费尔德曾申请对下世纪电子学的发展产生重要影响。 . 专利 - 控制电流的方法和装置是该专利首次提出场效应晶体管的工作原理。此后到1960年,虽然两代场效应半导体器件——JFET和MOSFET相继问世,但中国对此毫无贡献。直到今天,中国半导体产业仍落后于世界水平。
控制电流的方法和装置
MOSFET的全名是可怕的。它的英文名称叫Metal-Oxide-Semiconductor Field-Effect Transistor。中文名称为金属氧化物半导体场效应晶体管。我希望您也能体会到 MOSFET 的魅力——低到可以忽略不计的功耗、极其简单的结构和加工技术以及引人入胜的工作原理。
我们注意到 MOSFET 是一个场效应晶体管。什么是场效应?早年我们都学过磁场,知道异性会吸引异性。对于电子产品,也会产生电场。同电场和磁场一样,是同性排斥,异性吸引电子。电子会排斥电子,但电子会吸引空穴,反之亦然。这个说法很简单,只是给学生一个概念。在下面的部分中我将详细介绍电场。
电场
我们都知道晶体管的作用是用小电流控制大电流。所以晶体管一般有三个引脚。两个负责电流输入输出,一个负责控制开合。关键是如何打开和关闭它。我们必须使输入阻抗尽可能大。
什么是输入阻抗?输入阻抗是从控制引脚到输出引脚的电阻值。如果输入阻抗低,控制引脚上的电流很容易从输出引脚流出。每个控件都会有一点点打开和关闭。电流从输出引脚流出,这是一种浪费。如果输入阻抗大,那么控制脚上的电流就不容易从输出脚流出,因为电阻起到了阻断电流的作用。理想状态是输入阻抗无穷大,这样控制电流根本不消耗能量,CPU的功耗可以降到几乎为零。
MOSFET 使用一种非常神奇的方式来控制电流。它的输入引脚和输出引脚由两个独立的N型半导体相连。两个N型半导体填充有P型半导体。在中间的 P 型半导体上方,有一层薄薄的二氧化硅。(Oxide)绝缘层,上面是金属板,金属板连接控制引脚。
所以称为金属/氧化物/半导体/场效应/晶体管。
MOSFET结构
在 MOSFET 中,我们将输入引脚称为源极 G,将输出引脚称为漏极 D,将控制引脚称为栅极 G,将底部体 P 型半导体称为衬底 B[4]。当栅极没有施加电压时,我们可以看到在源极-衬底-漏极级之间有两个 PN 结。这两个 PN 结将电流从中流过的源极和漏极级隔离开来。没有方向可以流通。
N+半导体通道
但是,如果我们像栅极一样施加正电压,那么栅极金属板上的正电荷会吸引P型半导体和N型半导体带负电荷的电子。然后,绝缘层附近的区域被载流子(电子)填充。已知含有电子的半导体材料为N型半导体。虽然衬底本质上是P型半导体,但由于衬底有非常高的电子浓度,我们可以把那个区域的P型半导体看作是含有自由电子的N型半导体。我们称这个区域为海峡。由于源漏级之间的半导体现在性质相同,都是N型半导体,电流可以在两个引脚之间自由流动。
Ⅴ N+型半导体
事实上,这里源漏级使用的半导体还不是普通的N型半导体。这里使用了重掺杂磷光体的 N+ 半导体。它们含有大量的自由电子,可以使更多的电子能够被门控。极点相吸,增加了通道的宽度,使电流更容易通过。我们可以发现栅极和漏极是绝缘的,这意味着它的输入电阻非常高。可以说,如果不是MOSFET的发明,世界上产生的电都买不起几台电脑。MOSFET 的出现,让数以百万计的晶体管处理器走进千家万户。其简单的结构也让普通人拥有强大的计算能力。
正如我们的世界由原子组成一样,电子世界由 MOSFET 组成。再复杂的东西,其本质都是简单而美好的。希望本节对同学们有所启发,启发大家继续探索电子电路的魅力。
Ⅵ 常见问题
1、沙子是怎么变成硅的?
硅砂也称为二氧化硅,正如您从名称中毫无疑问地猜到的那样,它是一种硅和氧的化合物。为了获得硅,通过将其与碳混合并在电弧炉中将其加热至超过 2,000 摄氏度的温度来去除氧。
2. 你能从沙子中得到硅吗?
净化首先用还原剂碳加热沙子,以产生一氧化碳和硅。该工艺的产品称为冶金级硅 (MG-Si),纯度可能高达 99%。完成额外的处理,直到获得超纯电子级硅 (EG-Si)。
3、芯片为什么要用硅?
使用硅是因为它可以用作绝缘体(不允许电流流动)或半导体(允许少量电流流动)。这对于制作芯片很重要。
4. 硅芯片是如何工作的?
晶圆被标记为许多相同的正方形或矩形区域,每个区域将组成一个硅芯片(有时称为微芯片)。然后通过掺杂表面的不同区域将它们变成 n 型或 p 型硅,在每个芯片上创建数千、数百万或数十亿个组件。
5. 硅是由什么沙子制成的?
硅砂,也称为石英砂、白砂或工业砂,由两种主要元素组成:二氧化硅和氧气。具体来说,硅砂由二氧化硅 (SiO2) 组成。SiO2 最常见的形式是石英——一种化学惰性且相对坚硬的矿物。
6. 硅片数据是如何存储的?
在半导体存储芯片中,二进制数据的每一位都存储在一个称为存储单元的微型电路中,该电路由一到几个晶体管组成。... 数据通过称为内存地址的二进制数访问芯片地址引脚,该地址指定要访问芯片中的哪个字。
7. 硅芯片内部是什么?
每个计算机芯片都是由硅和金属构成的。计算机芯片也称为集成电路。每个芯片包含构成处理器的许多晶体管。... 在一个中央处理单元中,几个芯片被放置在一起,它们上有不同数量的内存存储空间。
8. 玩砂和硅砂有什么区别?
硅砂是白色的,玩砂是棕褐色的。硅砂比玩砂更轻、更细。
9. 内存芯片是否使用硅?
硅用于电子设备,因为它是一种具有非常特殊性能的元素。它最重要的特性之一是它是一种半导体。...难怪硅已成为存储芯片、计算机处理器、晶体管和所有其他电子产品的基础。
10. 硅芯片的例子是什么?
硅芯片是设备的大脑;通过其内置组件指导其所有功能。示例包括平板电脑、智能手机和笔记本电脑。
来源:电子资料库