何为无线充电技术?有何特征?
所谓无线充电,正如其名字一样是通过无线的方式来达到电力传输的技术。与常规的把电源线连接到手机上充电的方式不同,它只需将手机直接放在充电台上就能进行充电了。
图1所示、「充电器(电力输出侧)的线圈中流过交流电而发生磁通量,该磁通量和智能手机(电力接收侧)的线圈相连接,流过感应电流。」利用这样的电磁感应原理进行充电。
图1无线充电图例

无线充电器所面临哪些难题?
在智能手机高耗能的时代,拥有一款无线充电器作为外设移动电源还是很不错的,但是目前在技术方面,这种电源适配器还处在发展阶段,对于无线充电技术,它面临着那些难题呢?
一,干扰问题,平时我们都有这样的经历,手机放在电脑或者电视旁边时候,如果有短信或者电话进来,电脑或者电视屏幕就会受到干扰。如果把无线充电器放到房间里,是否也会对很多的家用电器产生干扰呢?
二,效率问题,实践证明,无线充电器充电的转化率比起有线充电器来说,要低了不少,目前最高只能达到85%,也算是一种能源浪费。所以使用在技术方面,还有提升的空间。
三,成本问题,毕竟无线充电技术虽然是早就有的技术,但是应用于充电还是一个新事物。无线充电包括电源管理模块、发射电路、接收转换电路和充电电路,而且还会涉及到很多的专利费用,成本一定高于目前广泛使用的有线充电和万能充电器。
四,限制问题,就目前来说,无线充电器还无法达到无线网络那么大范围的覆盖率,虽然充电板和接收器是两个部分,但是彼此还是不能分开太远,不然充电效率会大幅下降甚至无法充电。
五,辐射问题,现在人们谈辐射色变,无线充电由于电感线圈的存在,必然会产生磁力线辐射,但是在电流的辐射方面,目前无线充电器基本上将交流电整流后转换为直流电,且功率极小, 所以关于辐射的问题,依然是人们最为关注的方面。
相信相信随着未来技术的进步,无线充电器所面临的以上难题将会迎刃而解,真正实现规模化的生产与应用。目前,各大充电器厂家在生产制造方面都做好了充分准备。

无线充电器会产生哪些噪声问题?
在无线充电器中,如图2所示,①充电过程中低于100MHz的低频带中辐射放射(被释放到空间的噪声)变大,②充电过程中播放电视或者音频,数据通信的接收灵敏度变差,会发生这两种噪声问题。
充电过程中单分割的播放无法接收信号、不能接听来电,不能接收短信这类的问题。

图2 有噪声问题的频带

无线充电器中的噪声干扰机制是怎样的?
噪声源来自于在约100kHz时驱动的变频器。这种谐波成分在1GHz附近存在,会引起各种各样的噪声问题。
此外,电源线端放射的噪声被作为辐射来观察,从电力输出线圈放射的噪声和智能手机的天线结合会引起抑制接收灵敏度的现象。

图3无线充电器的噪声干扰机制

在无线充电器中何种噪声对策是有效的?
噪声对策的基础是在噪声源发出的噪声到达容易放射噪声的天线之前就将噪声抑制。如果不泄漏,即使是无线充电器,可以通过在电源线的底部插入共模扼流圈(CMCC)来达到削减辐射量的效果,在电力输出线圈前插入低ESL电容器和共模扼流圈可以达到改善接收灵敏度的效果。

图4 无线充电器的噪声对策 具体的改善效果如图5图6所示。
通过在电源线的底部插入共模扼流圈,能减低辐射量约20dB,CISPR22的规定中有明确表示。此外,通过在电力输出线圈前插入低ESL电容器和共模扼流圈改善接收灵敏度最大可达13dB,与不充电的时候的水平几乎持平。

图5 辐射量的改善效果
图6接收灵敏度的改善效果

谈谈技术、市场与产业链?
原理简单,实作困难
无线充电的方法在实验阶段有开发出很多方法,但目前唯一有机会量产商品化为线圈感应式。线圈感应式的原理很简单,是百年前就被发现物理现象,但过去长久以来这样的线圈感应只运用在绕线式的变压器中。早期就有人发现将绕线式的变压器的将“E”型铁心绕线后对向紧贴后接上市电就可以感应传电,但距离略为分开后感应效果就消失,这是因为在市电60Hz下,电磁波传递会随着距离增加能量快速衰退。在现今的应用中,由于装置本身需要有外壳包装,发射端加上接收端的外壳厚度至少从3mm起算,早期电动牙刷产品开发时就发现当距离拉开后需要将线圈上的操作频率提高才能让电力能传送的更远;在电磁波中有一个特性,就是频率越高的电磁波可以传送比较长的距离后能量衰减较低。后来RFID应用开始发展,主要就规划的三个频段LF低频(125~135KHz)、HF高频(13.56MHz)、UHF超高频(860~960MHz)可以使用,而这些频段也造就了目前无线电力系统在设计之初频率采用的参考点。早在10年前电动牙刷的无线充电就已经上市,当时的传送功率小、充电时间长,在现在的智能手持装置的耗电状况来看,当时的充电能量不敷使用所以10年来还无法实用化。但这几年来发展出新的技术可用较高的“共振”接收效率运作方式,由于这个技术较新所以各界的说法很多,但都是有一个很重要的特性,就是接收线圈上都会有配置电容来构成一个具有频率特性的接收天线,在特定的频率下可以得到较大的功率移转。这部份就跟早期的电磁感应不同,当距离拉开后依然就可以得到良好的电力传送效果。共振的原理非常简单,就跟钢琴调音师一样放不同水量的玻璃杯,在精准的调音下可以将某个玻璃杯透过共振将其振碎;但其它的文章都没有提到,若是没有经过专业钢琴调音师训练的一般人,可能永远也调不出可以让玻璃杯振碎的频率!这就是原理简单、实作困难。

展示简单,上市困难
电子零件出厂时就像是未调过音的钢琴,钢琴透过专业的调音师精准调校后可以发出高品质的声音;当大量生产后为了成本考量可能就无法在每一个产品都经由专业人员调校再出货,如果每一个产品都要专业人员来修正那就会有困难,因为专业人员有限。这就跟目前可以看到很多无线充电产品在很久前就发表了,在发表会上产品都可以完美演出,但过了很久的等待后还没见产品上市?就跟刚提到的例子一样,无线充电的产品为了达到很好的共振效果必需经过精准的调校,在这样的状况下量产会变的非常困难。所以无线充电系统的设计首先必需要能针对共振这部份能自我调整,这样才能解决量产难题。2008年INTEL即发表了可以离一公尺距离的两个线圈传送电力用以点亮60瓦特灯泡,发表当时也宣告了无线电力时代已经到来;但三年过去了相关产品还是没有上市,仔细想一下可以相距一公尺传送电力,这么强大的电磁能量就算对人体没影响、对周遭的电气制品会有非常大的杀伤力。无线电力系统的原理与烹调电磁炉相同,透过电磁波来传送能量只不过目标不同,电磁炉使用频率约50KHz能量发出后给锅具加热用已烹饪,过去网络上就有流传过一段影片就是将手机放在运作中的电磁炉表面上,在短时间内手机即烧毁,这样的原理一样电磁波会穿过手机外壳直接对内部的金属构造加热终至烧毁。前文题到过,为了加长传送距离必需提高传送频率,电磁炉的频率较低在离开数公分后就衰减到安全界限以下,INTEL发表的相距一公尺传送电力必需将频率提高到约13MHz才能传送,在这个状况下线圈之间若是存在金属物体将会被加热而发生危险,表演中工作人员可以站在两个线圈中间不会有危险,是因为人体内的金属成份很少所以温度上升有限。当电磁波频率加到1GHz以上就会直接对水分子加热;这个原理就变成微波炉了,水分子被电磁波搅动后发出热量。所以微波炉与电磁炉不一样,必需在屏蔽体内操作避免为害到人体。这部份又与市面上的无线通讯产品不同,因为能量差距甚大;无线电力系统需要传送电力而发送到受电装置所以需高功率传送,无线通讯产品收到低功率讯号后再透过内部的电池将讯号放大处理。所以不管是在13MHz会对金属加热或是1GHz以上直接伤害人体,无线电力在设计时必需解决安全的问题才能上市,这就是展示简单、上市困难。

三大效能指针:效率、安全、功率
电动牙刷早在10年前就堆出无线充电了,当时由于功率需求低所以不需要考虑效率与安全。早期的系统转换效率只有20%-30%,且没有安全机制并不会辩识目标连续供电,这样的系统就与微型电磁炉一样。由于功率很小,接收需求只有0.1W上下,只有20%的转换效率下即有80%的能量于传送中转成热量散逸,这样推算发射器提供0.5W的能量到接收器为0.1W的能量,0.4W产生的热量有限对系统的温度上升不明显,且系统最大输出能力也不大即0.5W,所以在发射器上放置金属异物也不会产生危险;但今日的装置需求远高于0.1W,以热销的智能型手机来看接收需要5V-1A 即5W的充电能量,若用电动牙刷的系统进行设计问题就会很大了,接收端5W的需求在只有20%的转换效率下有20W的能量转换成热能散逸,这样的能量会产生庞大的热能会导致系统温度大幅上升,在这样的推算下,系统最大输出能力会在25W,若为无安全设计下于发射器上放置金属异物可能会导致火灾意外,所以在功率需求提高后衍生的问题需要全新的设计来完成无线充电,所以10年前即出现的无线充电到今还改良之中。新设计的系统需为了达到目标功率,必需先解决效率与安全的问题。

高转换效率仰赖先进规格零件与材料
现今无线充电系统都采用共振的方式进行设计,在架构上都大至相同有下列这些构造:
发射器内有
1.直流电源输入
2.频率产生装置
3. 切换电力的开关
4. 发射的线圈与电容谐振组合
接收器内有
A. 接收的线圈与电容谐振组合
B. 整流器
C. 滤波与稳压器
D. 直流电源输出
在样的架构下从发射器的1.直流电源输入到接收器 D.直流电源输出应过的每一个环节都是效率损耗的要点,在电源电路中电流通过的每一个有阻抗特性的零件都会在上面损耗部份能量,这几年材料的进步也让无线充电的实用化大增,其中有几样先进零件是无线充电系统中与传输效率相关的,为了达到高转换效率需要将这些零件与材料作组合运用。
a.频率产生装置:目前有数家公司将此部份开发成IC销售,其为发射电路板上的关键零件。
b.切换电力的开关:大多为MOSFET所构成,低导通阻抗与高切换速度是选用的要点。
c.发射/接收的线圈与电容谐振组合:此部份为过去从未出现过的技术,由于无规则可循所以只能透过不断的尝试,另外未了阻绝多于的能量散到其它地方,于线圈的未感应侧都会家上磁性材料,这类的材料特性也是全新的应用。
d.整流器:由于在线圈上的操作都是高频率、高电压的能量讯号需要能有效的换成直流电才能给受电装置使用,目前大多采用超低VF的萧特基二极管所构成。
e.滤波与稳压器:这部份难度在接收装置空间有限,设计上要小型化的困难处,通常高转换效率的电路配置大体积被动零件。

设计最艰难的部份在于安全
先前提到无线充电系统与电磁炉一样会发射电磁波能量,这有两大问题:
其一为当发射器上没有放目标充电装置时一样在发射能量,长时间下会造成能源的浪费,不符合现在产品节能的趋势。另外一个问题较严重,为当发射器上放的是金属异物,电磁波对其加热;这个状况轻则烧毁装置,重则发生火灾危其人员生命财产。所以无线充电系统若要上市销售,必需要有一个重要的功能即为“受电端目标物辨识”,当正确的目标物放置在发射器上才开始送电,若不是的话则不送电。用来侦测近距离装置的方法有很多,但在无线充电系统上有一个问题就是无法采用昂贵的零件来完成这个功能,记住目前设计的只是一个充电器,若成本太高的话市场会无法接受这个功能。而目前有两个实用的方法来完成这个功能: 1. 磁力激活:在受电端上装一个磁铁,当发射端感应到磁力后开始发送能量,这个方法简单有效,因为没有人会无意中放一个磁铁在发射器上让它烧毁。2.感应线圈上的资料传送:这是目前认为最安全的方法,与RFID的原理相同,利用两个线圈内的电力传送中,包含资料码一起传送;这个方法最安全也是最难完成的,因为感应线圈上有高能量的电力传输、另外还包含了系统的噪声与负载电流变化的干扰,如何有效的传送资料码是一大难题。
可变功率系统需建立在数据传输机制上
一个理想的系统为在无线充电发射器上放置不同的接收器,接收器可为不同的装置从小电力的耳机到大功率的笔记型计算机,都应该要能对应不同的目标物;但每个接收装置的电力需求都不一样,这时发射器必需要能自动调节功率输出。但这样的功能要建立在发射器与接收器要能够传送资料码来进行沟通,所以如何运用感应电力的线圈进行资料码传送是研发的要点。关于这个技术数年前已经有多家公司投入开发,其每家公司的方法有差异在实作上的稳定性也需要再经过验证。

无线充电共通标是理想却难以实现
目前有业者在推行无线充电标准,理想化的标准是可以跨品牌使用。这个是一个很理想化的目标,所谓的标准就针对两个部份需要规范才能运作;第一就是要有共通的共振频率,电力传输是需要透过预设好的共振频率来传送,发射器提供的电磁波能量之频率需要是接收器的共振频率才能得到好的转换效率。第二就是标准的资料传送码或其它识别激活方式,发射器需要对应到正确的接收器才能开始送电。一个共通的标准的确是市场所期待的,目前在推动无线充电标准化的团体已经运作多时,但在市面上的产品还算少见,这部份可以深入了解后可以发现一些问题,一部份是其标准尚未完整以致研发人员照规格书开发确无法顺利将产品完成;另一个问题是该标准并不是免费的,当产品上市前需要先支付相关专利的权利金,所以共通标准是未来的趋势,但目前实际应用还未成熟。

三大关键组件牵动三个产业链
就无线充电产品看有三大关键组件,其中有控制电路板、感应线圈、磁性材料。
目前无线充电尚在起步阶段,市场预期接下来的二到三年会开始高度成长,而四年后将会变成品牌商品的标准备规格之一。这个市场的成长会牵动的产业链不只在电子产业,感应线圈需要精密治具生产这牵动的是机械工业,线圈上需要运用高效能电磁波屏蔽能力的磁性材料这牵动的是化学工业。所以一个产品的成长可以牵动三个产业链,因为这个产品并不是过去已经存在的产品,而是全新的类别全新的应用,相关的材料都要重新开发生产,对经营面来看这也是可以开发的新领域。
资料来源 baidu文库