电源管理芯片(Power Management Integrated Circuits),是在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责的芯片。主要负责识别CPU供电幅值,产生相应的短矩波,推动后级电路进行功率输出。常用电源管理芯片有HIP6301、IS6537、RT9237、ADP3168、KA7500、TL494等。

  主要电源管理芯片有的是双列直插芯片,而有的是表面贴装式封装,其中HIP630x系列芯片是比较经典的电源管理芯片,由芯片设计公司Intersil设计。它支持两/三/四相供电,支持VRM9.0规范,电压输出范围是1.1V-1.85V,能为0.025V的间隔调整输出,开关频率高达80KHz,具有电源大、纹波小、内阻小等特点,能精密调整CPU供电电压。

114112300.jpg

  电源管理芯片发展的必要性

  所有电子设备都有电源,但是不同的系统对电源的要求不同。为了发挥电子系统的性能,需要选择适合的电源管理方式。

  首先,电子设备的是半导体芯片。而为了提高电路的密度,芯片的特征尺寸始终朝着减小的趋势发展,电场强度随距离的减小而线性增加,如果电源电压还是原来的5V,产生的电场强度足以把芯片击穿。所以,这样,电子系统对电源电压的要求就发生了变化,也就是需要不同的降压型电源。为了在降压的同时保持高效率,一般会采用降压型开关电源

  同时,许多电子系统还需要高于供电电压的电源,比如在电池供电设备中,驱动液晶显示的背光电源,普通的白光LED驱动等,都需要对系统电源进行升压,这就需要用到升压型开关电源。

  此外,现代电子系统正在向高速、高增益、高可靠性方向发展,电源上的微小干扰都对电子设备的性能有影响,这就需要在噪声、纹波等方面有优势的电源,需要对系统电源进行稳压、滤波等处理,这就需要用到线性电源。上述不同的电源管理方式,可以通过相应的电源芯片,结合极少的外围元件,就能够实现。可见,发展电源管理芯片是提高整机性能的必不可少的手段。

  如何选择电源管理芯片

  电源管理的范畴比较广,既包括单独的电能变换(主要是直流到直流,即DC/DC),单独的电能分配和检测,也包括电能变换和电能管理相结合的系统。相应的,电源管理芯片的分类也包括这些方面,比如线性电源芯片、电压基准芯片、开关电源芯片、LCD驱动芯片、LED驱动芯片、电压检测芯片、电池充电管理芯片等。下面简要介绍一下电源管理芯片的主要类型和应用情况。

  如果所设计的电路要求电源有高的噪音和纹波抑制,要求占用PCB板面积小(如手机等手持电子产品),电路电源不允许使用电感器(如手机),电源需要具有瞬时校准和输出状态自检功能,要求稳压器压降及自身功耗低,线路成本低且方案简单,那么线性电源是恰当的选择。这种电源包括如下的技术:精密的电压基准,高性能、低噪音的运放,低压降调整管,低静态电流。

  在小功率供电、运放负电源、LCD/LED驱动等场合,常应用基于电容的开关电源芯片,也就是通常所说的电荷泵(Charge Pump)。基于电荷泵工作原理的芯片产品很多,比如AAT3113。这是一种由低噪声、恒定频率的电荷泵DC/DC转换器构成的白光LED驱动芯片。AAT3113采用分数倍(1.5&mes;)转换以提高效率。该器件采用并联方式驱动4路LED。输入电压范围为2.7V~5.5V,可为每路输出提供约20mA的电流。该器件还具备热管理系统特性,以保护任何输出引脚所出现的短路。其嵌入的软启动电路可防止启动时的电流过冲。AAT3113利用简单串行控制接口对芯片进行使能、关断和32级对数刻度亮度控制。

  而基于电感的DC/DC芯片的应用范围广泛,应用包括掌上电脑、相机、备用电池、便携式仪器、微型电话、电动机速度控制、显示偏置和颜色调整器等。主要的技术包括:BOOST结构电流模式环路稳定性分析,BUCK结构电压模式环路稳定性分析,BUCK结构电流模式环路稳定性分析,过流、过温、过压和软启动保护功能,同步整流技术分析,基准电压技术分析。

  除了基本的电源变换芯片,电源管理芯片还包括以合理利用电源为目的的电源控制类芯片。如NiH电池智能快速充电芯片,锂离子电池充电、放电管理芯片,锂离子电池过压、过流、过温、短路保护芯片;在线路供电和备用电池之间进行切换管理的芯片,USB电源管理芯片;电荷泵,多路LDO供电,加电时序控制,多种保护,电池充放电管理的复杂电源芯片等。

  特别是在消费类电子方面。比如便携式DVD、手机、数码相机等,几乎用1块-2块电源管理芯片就能够提供复杂的多路电源,使系统的性能发挥到。