上个世纪在医疗成像领域实现的技术进步为非侵入诊断创造了前所未有的机会,并确立医疗成像作为医疗健康系统的组成部分。代表这些进步的主要创新领域之一是医疗图像处理的跨学科领域。
这一快速发展的领域涉及从原始数据采集到数字图像传输的广泛流程,而这些流程是现代医疗成像系统中完整数据流的基础。如今,这些系统在空间和强度维度方面提供越来越高的分辨率,以及更快的采集时间,从而产生大量优质的原始图像数据,必须正确处理和解读这些数据才能获得准确的诊断结果。
医疗图像处理的核心领域
有许多概念和方法用于构建医疗图像处理领域,这些概念和方法侧重于其核心区域的不同方面,如图1所示。这些方面形成此领域的三个主要过程——图像形成、图像计算和图像管理。
1.png
图1. 医疗图像处理中主题类型的结构分类。
图像形成过程由数据采集和图像重构步骤组成,用于解答数学反演问题。图像计算的目的是提高重构图像的可解读性并从中提取与临床相关的信息。最后,图像管理处理所获取图像和派生信息的压缩、存档、检索和传输。
图像形成
数据采集
图像形成的第一个必需步骤是采集原始成像数据。该数据包含有关描述身体各内部器官的捕获物理量的原始信息。这些信息成为所有后续图像处理步骤的主要主题。
不同类型的成像模式可以利用不同的物理原理,由此涉及不同物理量的探测。例如,在数字射线照相 (DR) 或计算机断层扫描 (CT) 中,它是入射光子的能量;在正电子发射断层扫描 (PET) 中,它是光子能量及其探测时间;在磁共振成像 (MRI) 中,它是由激发原子发射的射频信号的参数;而在超声波中,它是回声参数。
但是,无论是哪种类型的成像模式,数据采集过程都可以细分为物理量的探测,还包括将物理量转换为电信号、对采集的信号进行预调理,以及物理量的数字化。表示所有这些步骤均适用于大多数医疗成像模式的一个通用框图如图2所示。
2.png
图2. 数据采集过程的通用框图。
图像重构
图像重构是利用获取的原始数据形成图像的数学过程。对于多维成像,该过程还包括以不同角度或不同时间步骤捕获的多个数据集的组合。这部分医疗图像处理解决的是反演问题,这是该领域的基本主题。用于解决这类问题的算法主要有两种——分析和迭代。
分析法的典型示例包括广泛用于断层扫描的滤波反投影 (FBP);在MRI中尤为重要的傅里叶变换 (FT);以及延时叠加 (DAS) 波束成型,这是超声检查中一种不可或缺的技术。这些算法在所需的处理能力和计算时间方面精巧而高效。
然而,它们基于理想化模型,因此有一些明显的局限性,包括它们无法处理诸如测量噪声的统计特性和成像系统物理等复杂因素。
迭代算法则克服了这些局限性,极大地提高了对噪声的不敏感性以及利用不完全原始数据重构最优图像的能力。迭代法通常使用系统和统计噪声模型,基于初始目标模型利用假设系数计算投影。计算出的投影与原始数据之间的差异定义用于更新对象模型的新系数。使用多个迭代步骤重复此过程,直到将映射估计值和真值的代价函数最小化,从而将重构过程融入最终图像。
迭代法有很多种,包括最大似然期望最大化(MLEM)、最大后验(MAP)、代数重建(ARC)技术以及许多其他目前广泛应用于医疗成像模式的方法。
未完待续......
了解更多关于ADI的医疗图像处理技术,戳这里:https://ez.analog.com/cn/other/f/forum/112784/thread