之前的系列文章,我们描述了什么是SDV,澄清了SDV的历史渊源以及对SDV的一些误解,并提出了软件驱动汽车的概念 (如何正确理解SDV,感兴趣的小伙伴可以参阅公众号文章 – 正确理解软件定义汽车)
今天,我们重点谈谈目前汽车行业面临的痛点问题,如何进一步解决,让软件真正发挥其巨大潜能。
图源:互联网
通过对不同的汽车软件开发者的访谈,以及软件开发管理过程中的经验教训,@爱索咨询认为,除去组织架构的独立性之外,汽车软件的转型,目前还存在几大方面的痛点亟待解决:1、文化思想层面的冲突
2、人员技能的转型
3、内部流程制度的升级
4、成本管理的转变
1.
文化思想层面冲突
一百多年的汽车工业史,将汽车打造成了高度模块化的集成。汽车结构与机械工程师,穷尽力量确保车内不同的零部件做到最大程度解耦,保持其独立性。但是,“成也萧何,败亦萧何”,高度模块化为并行工程及外包奠定了厚实的基础,但也导致了OEM主机厂更多关注在产品定义,造型设计,产品组装集成和品牌宣传上。而大量的工程、开发和制造工作,都交给了供应商来做。但是,当大量的零部件及软件产品是来自内部开发团队时,传统的工作思维将面临诸多新的挑战:
- “甲方爸爸思维”与生态管理思维的转换
下图1展示了未来智能车的生态场景。面向未来的智能驾驶,更多的互联网内容提供商(ISP)会成为汽车企业的重要生态合作伙伴,因为他们同时面对C端用户(手机或PC端),又面对车厂(车端),所以,既不是传统的供应商,又不是完全松散的“路人甲”。对于生态合作伙伴的管理,需要新的创新思维与方法。
图1
- “零部件管理”的思维与系统和功能导向的场景的解决方案思维转换
与之相对应的是,系统与软件的开发,则是从客户需求的功能场景出发。下图2展示了典型的V2X的应用场景,需要各个ECU零部件相互协调,通过SOA的架构,形成有机整体。所以,客户场景与市场的需求,需要的是跨场景的解决方案,更多的生态伙伴的参与。从基础网络设施提供商,城市大脑方案商,基础公共实施方案商到云端平台服务商,生态内容提供商,都考验着汽车企业的方案设计与整合能力。
图2 图源:信息通信网
- “硬件开发管理”与“软件开发管理”的思维转换
- 零部件的管理,是通过严苛的质量阀门的管理,供应商交付的零部件产品(软件+硬件)将会被组装到整车上,其生产过程,版本和发布是严格计划管控的。但软件产品却可以做到“柔性生产”。每天甚至每小时“生产”,随时随地发布,更新替代。版本和功能的多样性,硬件的依赖关系,等,都带来与零部件开发管理不一样的技能和思维挑战(图3)。
- 硬件产品开发过程中,很多依赖是无法调和的,例如,如果芯片没有,开发工程师就无法完成电路板的焊接。但是,对于“柔性”的软件,很多依赖却可以找到不同的变通方法,未必是“Hard Dependency”。这需要管理层的敏捷性(Agility)以及经验的积累,团队的精诚合作。
图3
- “硬件产品管理”与“软件产品管理”的思维转换
- 从产品的可靠性来看,硬件产品通常存在“浴盆曲线”(见图4),但作为软件产品,却是不同的可靠性曲线。随着软件产品的独立发布与演进,软、硬件产品的质量管理将出现不同的方向和手段。
图4
- 硬件产品的生命周期与软件产品呈现不同的形态 – 硬件产品一旦装配,将伴随着车辆10~15年而不可更改。如有问题,只能是“召回”,无论是物理召回或返回4S店维修。但软件产品却是“发布”和“更新”。现代互联网的ICT技术,支持了远程OTA。在整辆车的生命周期内,将会出现多轮新功能的迭代(图5)。
图5
- “硬件成本”的管理思维与全生命周期成本的思维转换
当面对软件供应商提供的软件产品,Unit Cost又将如何定价,又如何转化为可盈利的软件商业模式呢?同样,如果是内部开发的软件产品,开发成本如何摊销?软件资本如何合理配置?因为软件是“柔性”的,当管理不善,软件的开发成本将大大超过了零部件硬件成本的节省。
BMW公司的Christian Salzmann曾经提供过一组数据:对于每年需求量为500K的一款ECU,如果每年降低硬件成本20Euro每件,在7年的生产周期内,共计可以节省70MEuro。但是,如果软件开发没有做到更好的重用,却会浪费额外的100MEuro。
图6
另外,“开源节流”,传统的硬件成本的管理模式关注的是“节流”。但是,作为前车之鉴的ICT行业,如摩托罗拉,诺基亚,苹果公司,汽车界的“鲶鱼”(见上图6),特斯拉,他们的软件销售却打开了一扇“开源”的窗户,通过硬件的预留,虽然短期内硬件成本上升了,但是,通过软件的OTA迭代升级,却创造了更大的销售收入。这种全生命周期的成本考核,是对传统汽车人的新的思维和管理体制上的挑战。 2.
人才技能转型
汽车软件相对而言是复杂的,并且是分布式部署的。其应用领域,覆盖了从车机娱乐软件到安全实时控制软件,跨度大且分散。根据其应用领域及对安全实时性要求来划分,汽车软件可以概括为这些领域(如图7示例):- 车内多媒体及HMI相关的软件开发。这部分通常对实时性要求不高,也是目前车联网软件的重点域
- 车内智能驾舱相关的语音识别,手势识别等AI软件。这部分通常对实时性要求不高,更多的是基于事件的处理,部件之间的通信是通过服务请求与反馈的形式实现
- 车辆底盘、动力控制,车内通信等相关的软件及算法。这部分通常对实时性和安全要求高,需要非常高的可靠性。部件之间的通信是基于信号的控制来实现
- 车内与自动驾驶相关软件,如ADAS, AVP等。这部分通常对实时性要求高,需要安全设计的考虑;同时,对算力有更高的要求,需要高性能的处理器来满足系统功能的要求
- 云端软件及移动通信基础架构:这部分通常不依赖于具体的硬件,根据应用场景,对实时性要求各不相同。同时,通信网络的开放,对信息安全的要求日益苛刻。
图7 图源:瑞萨网站
通过上述简单的软件划分,我们可以分析:- 和整个汽车软件关系最大的,可能就是OEM主机厂的电子电气架构部门。但是,观察一下各大车企技术中心、研究院的负责人,基本都是传统底盘、发动机等领域出身。他们对智能驾舱,自动驾驶和云端及移动通信,以及信息安全的知识短板需要补足(见图8)。
图8图源:QNX网站
- 目前,OEM主机厂基本是提供类似“Black Box”的零部件规格(SOR或RFQ),具体的实现和技术上的Know-how,基本上都掌握在供应商手里。
如图9所示,是来自OEM主机厂的典型VDC (Vehicle Dynamic Control)子系统功能规格书,除了这种黑盒的接口定义,软件与硬件的实现,基本掌握在供应商手中。所以,传统汽车产业链当中,对软件了解最多的,应该是Tier1供应商中的汽车电子软件部门。而知识产权从供应商手里转移到汽车OEM开发人员手里,几乎是不可能的。尤其是,传统上的汽车OEM企业,基本不会为软件开发单独支付NRE成本 (某种意义上讲,就是“白嫖”)。所以,要获得这部分知识产权,更是难上加难。
图9
- 受限于整个行业的发展趋势,汽车电子软件的主流开发大部分还局限在微控制器(MCU)层面。最近五、六年,随着车联网和自动驾驶的发展,逐步转向了基于ARM的SOC平台,多核的芯片处理器。
目前汽车行业的从业人员,基本是利用基于AUTOSAR的自动代码生成工具,如Etas, Mentor Graphic, EB Tresos等,通过图形化的界面配置应用程序,自动产生代码。但是,随着自动驾驶,智能驾舱的新功能出现,汽车对算力的要求越来越高,分层的软件架构,操作系统和高性能SOC平台的采用成为常态。之前的开发工具链开始面临挑战,新的工具链还不成熟。这对于传统汽车行业软件从业人员,将是新的挑战。多年使用类似于AUTOSAR CP的工具链,已经让大部分汽车软件开发人员沦为了简单的配置工程师,逐步丧失了底层软件0到1的开发能力; 对底层芯片的理解更是捉襟见肘。这种挑战将触及灵魂。缺少必要的,成熟工具链来支撑代码的自动生成与测试,将会产生发自内心深处的焦虑感。
图10是节选自互联网的一张HPC的系统架构图。复杂的系统结构,对传统ECU的从业人员的挑战是巨大的。代码运行从传统的单核到现在的多核,如何合理地,动态分配资源而不是之前的静态资源分配,都对传统汽车电子软件开发人员带来挑战与技能的转型。
图10 图源:互联网
- 汽车电子软件属于嵌入式软件开发范畴,是在专用计算机系统上进行软件开发,一般要求开发人员具有一定的硬件基础。主流的嵌入式平台包含ARM、DSP、FPGA等,开发语言主要是汇编/C/C++。相对应的是,IT与互联网大部分的软件开发人员,都属于在通用计算机系统上的软件开发,一般是在某种操作系统上,如Windows,Linux,Android,IOS等,进行应用软件开发,主要包含电脑端,手机端,服务器端等设备,以X86与ARM架构为主。大部分开发人员都会使用某种高级语言,如C++,JAVA,JS,PYTHON,MySQL,等,进行特定任务的开发。但是,对来自汽车产业外部的互联网开发人员,虽然人数巨大(据估计,有100万的从业人员),但如果从事汽车电子软件的开发,却需要了解整车架构及汽车本身的know-how(图11)。这个限制了互联网软件开发人员的选择。
- ICT行业与智能硬件的公司,以及芯片公司,也培养了大量的通信精英(移动通信,Wifi,Ethernet 等)和底层BSP或Firmware固件开发团队,他们属于软件团队中最懂电子硬件的人。这部分人将是汽车电子软件开发的最佳人选。但是,对整车架构和汽车本身的know-how的理解(图11),也同样限制了这部分嵌入式软件开发人员能够快速上手。
图11 复杂的整车架构,需要多年的知识沉淀与积累 图源:互联网
- AI智能的发展,互联网公司培养了大量的算法人员(图像/语音/数据)。开放的互联网精神,也培养了一批技术深厚的信息安全团队。而应用软件的多样化和成熟的C/S框架,如Restful,RCP等,也练就了一批优秀的前端和后端开发人员。因其更多的独立于具体的硬件,或者倾向于云端和熟悉的PC及移动端打交道,切换成本会很少。这部分人才是实现车联网的云端软件,以及大数据分析的专业人才。当然,对于整车的架构,汽车产业法令、法规的了解以及B端市场的规律,仍然需要一定时间的磨合与历练。
3.
管理流程升级
百年的汽车工业开发,形成自己特色的,基于质量阀门的整车开发流程。通过这种流程,把OEM主机厂和其Tier1,Tier2供应商密切地联系在一起,形成有机的开发整体。但是,随着基于功能和场景的解决方案逐步发展,软件占据主导地位,现有的OEM开发流程却不能很好地适应软件系统与软件工程,流程面临巨大的挑战,需要全方位的系统建设。这种流程的系统化建设,需要流程的架构与设计,它涵盖了组织制度,角色和职责等维度(具体参阅公众号文章:行云流水般的流程):- 需求管理流程
汽车OTA功能的实现,如何管理汽车上市后的OTA功能与需求,如何连接运营,4S售后服务等功能需求,如何随时提供云端服务功能,都需要对原有基于零部件开发的流程进行改造。
图12智能汽车功能需求
- 架构设计与接口定义流程
汽车工业的传统模式,软件的know-how 基本被有实力的供应商把控,具体的软件实现,接口定义,对OEM是不可见的。所以,如何确保不同的ECU软件有机结合,协调实现必要的场景,相应的工作机制需要建立。
而车、管、端三位一体的未来发展方向,三者的联动的架构设计,同样需要合理的流程机制来保障。伴随着SOA架构的逐步实现和车内通信线路的以太网化,接口的定义将逐步从基于信号的定义或者简单的消息结构的定义C/S模式转向更复杂的SOA架构与接口定义(如图13所示)。当冲突发生,需要相应的技术仲裁流程进行合理评估。
图13 接口定义将由简单的C/S模式向更复杂的接口定义演进
- 代码与集成流程
汽车的造型设计形成不同的车型及零部件的Fit和Form。传统的零部件开发模式,不同Fit的零部件的软件代码各不相同。如何有效地重用代码;如何构建软件架构平台;如何将不同代码集成在一起,成为新的挑战。需要新的流程来确保软件代码的重用性及软硬件的集成。
- 产品与项目管理流程
传统的零部件产品与项目常常合二为一。一旦硬件最终认可,软件将随之冻结,直至生命周期的终结。但是,智能车的软件产品却可以随时增加新的功能,形成新的版本,通过远程OTA进行更新。可以想象,未来同一款硬件,将会预装不同的软件版本,在市场上销售。如何管理客户车辆的软件版本,如何管理软件的兼容性,等等,需要新的流程改造。而项目管理,如图14所示,可能会以软件开发管理为主,在硬件产品的生命周期内,通过项目的模式组织软件的交付。
图14
- 售后服务的流程
随着软件远程诊断的开启,以及AI及IOT技术的落地,基于数据的售后服务体系终将建立。传统的4S服务的模式将逐步转移到线上。如图15所示的远程服务体系的场景将成为常态,相应的流程体系的改造也势在必行。多生态合作伙伴的介入,如何管理端到端的场景解决方案,提供更高的服务质量,都是OEM主机厂面临的问题。
图15 复杂的智能汽车场景
- 开发工具链的挑战
各种自动驾驶,人工智能,软件算法,云端软件的开发诉求,将会促使新的开发工具链。或者传统的工具链进行演化,如基于AUTOSAR CP开发的工具链将进一步进化为AUTOSAR AP等(见图16)。而流程的优化和改造,同样需要类似JIRA,禅道,Synopsys,RobertFramework之类的软件开发测试验证等工具链的引进。
图16 AUTOSAR工具链 图片源自CSDN
4.
成本管控方式转变
做过汽车Tier1供应商的小伙伴,我相信都经历过那种血淋淋的汽车零部件的商务报价过程 – “没有最低,只有更低”。最后的后果,不管你是否相信,会是产品质量的丧失。这从一个维度,充分反映了目前传统OEM主机厂的思维定式:一辆汽车的功能决策,更取决于零部件的价格。在过去以机械结构为主的汽车中,这个做法可以理解。但是,随着软件驱动汽车的发展,如前面几篇文章所述,全生命周期的成本的权重要远大于目前单件成本的争夺。对比来看,在新势力造车的蔚小理中,交付让消费者眼前一亮的功能却被视为更为重要的决策依据。
在零部件采购中,这种“砍到骨头”的低价策略,会带来负面影响。工程师们,不管是来自供应商或者OEM主机厂,会不断地降低处理器的算力,内存,通信带宽等关键计算资源,从而降低硬件成本。如此一来,却对软件带来根本的损害及不可预测的后果:
- 软件工程师们将不得不优化软件代码,以适应有限的计算资源。但因为系统的复杂性,这样的后果是,在未来的性能测试中发现各种莫名其妙的问题,导致很难查找根本原因,从而增加了工程成本,甚至延误了产品的上市周期。另一方面,尽管没有找到问题的根源,迫于项目的进度,工程师们也是“拆东墙补西墙”,采用临时方案应对项目的交付,为量产后的产品质量种下隐患,增加了售后服务的成本。
- 软件工程师不得不压缩他们的代码,确保其足够的小,可以被调入有限的内存运行。代码要足够地精简,确保内存的每一位(Bit)都能被充分利用。如此一来,任何新功能的增加将变得几乎不可能。更有甚者,甚至缺陷的修复也将无从下手,而不得不进行硬件的召回。这些,在增加了工程师成本同时,进一步加剧了公司的售后服务成本,消减了公司的软件销售收入来源。
- 由于代码的过度优化,会导致后期的代码维护尤其困难。复杂的语句,让后期维护人员不敢有丝毫的触碰。对代码的修改成为每个人心中的噩梦。
- 过度精简代码,将会很难做到代码的重用及其可移植性。也无法做到功能的预埋。如此一来,唯一的途径是通过OTA进行从上到下的固件和应用软件的更新。从客户成本的角度,浪费了客户的时间,增加了流量成本。从业务的角度,增加了内部的运营成本及软件工程成本。
图17 全生命周期成本
这里,我们并不是强调传统的Cost Per Unit的成本管控不重要。我们强调的是全生命周期的成本概念。如图17所示。所以,在评估零部件的单件成本时,除了零部件相关成本之外,必须考虑其带来的项目延迟风险,产品上市窗口,工程成本,调试成本,售后服务成本,代码复用以及未来新的销售收入增长的机会成本。
消费者需求的多样性和定制化的诉求,驱使主机厂在配置上形成不同的配置版本,产生不同的汽车Variant。以“简单的动力系统控制的应用功能来讲,会有3488中不同功能配置”(注:来自Manfred Broy)。而目前的奢华车,基本配备120个左右的ECU,简单的“有”或“没有”的配置,会有2120种Variants,供消费者选择。除了市场和用户的驱使,在整车长达10~15年的生命周期内,各种小改款,中期改款,大改款,VAVE层出不穷,同样结构的ECU,会有不同的FIT,FORM,也可能预装了不同的软件版本。如此众多的Variant,需要巨大的验证与确认工作,必将产生庞大的汽车工程成本。同样,庞大的汽车Variant,也对售后服务的备件,服务技能和召回预算形成巨大的压力 。
汽车行业的“赖特定律”(注:莱特定律由美国航空工程师西奥多·赖特在1936年提出,他将制造效率和制造经验联系起来,其核心是每生产一定单位的产品,其制造成本将下降恒定的百分比)指出,“单个型号的汽车产量每累计增加一倍,成本的价格就会下降15%”。这终将会驱动硬件的标准化,降低汽车的Variants,从而降低汽车工程成本;功能的差异化实现,则更多地通过软件来竞争。
图18 某品牌汽车OTA升级新闻
然而汽车软件带来的成本增加,将越来越显现。如何管控软件的劣质质量成本,将成为摆在每一位汽车从业人员面前的一道关卡。图18是关于某品牌汽车的OTA升级的一则新闻(德国《汽车与体育》(Auto Motor und Sport) 报道),12小时的升级过程,7.5小时的软件安装过程。按4G网速计算,升级包高达30G,单车流量费将高达三位数。更令人大跌眼镜的是,电池电量居然被耗光,这让消费者情何以堪?
汽车工程成本的另一个维度,是汽车软件的Variant。传统的ECU零部件,在整车的生命周期内,会有不同的FITs,Form等。但是,不同外观尺寸的ECU与ECU之间的软件差异可能不超过10%。不幸的是,因为软件的不重用性以及单位硬件成本的管控理念、采购理念,导致软件很难从一个ECU很快地移植到另一个ECU。这使得大部分软件不得不被重写(据德国汽车工业提供的数据,大部分软件的改动其实只有10%的差异性。)。随着车子智能化的发展,底层硬件的通用化,软件重用的趋势是必然。如此一来,软件产品的观念(见图19示例图)急需在整车厂建立并实践。
图19 软件产品概念示意图
5.
写在最后
SDV,软件驱动汽车,毋庸置疑,已经是实实在地摆在每一个组织,每一位汽车从业人员面前的课题。尽管汽车软件,相对硬件而言,体量仍然渺小,其在成长的道路上需要“水”,“土壤”和“阳光”,需要企业管理者和每一个汽车从业人员的爱护和浇灌。但是,面对这个汽车产业这个百年未有之大变局,软件必将撬动整个汽车的产业链,在汽车生命周期的各个环节,如图20所示,产生新的价值,驱动创新与再造。
图20 汽车生命周期生态链
在这个过程中,觉醒的OEM开始与外部公司合作,例如零束汽车软件与爱索管理咨询的云端发布DevOPS改造;极氪汽车的整车流程优化、再造,软件审核等。这些都是顺应软件驱动汽车之大变局,通过广泛的生态连接,构建健康的软件生态链;另一方面,也正反映了企业开始正视面临的问题,通过价值洞察,积极推进组织变革,思维变革,技术know-how, 人才储备以及流程制度的建设。
只有这样,才能构建软硬融合的产业生态,让智能汽车,乃至自动驾驶技术越走越远。
作者介绍:
宋涛,原ICT行业20年的研发高管,贝尔实验室数据科学家,六西格玛黑带大师,现为爱索咨询的CTO兼首席咨询顾问。
爱索咨询是一家专注高科技企业管理和创新能力的咨询公司,现为多家头部车企提供研发管理的咨询服务。
本文由编辑推荐,原出处:https://www.eet-china.com/mp/a124270.html