首先介绍一下模电书上对各工作区的介绍:
夹断区:当VGS<Vth时,MOS管导电沟道被夹断不导通,此时ID≈0。
恒流区(饱和区):当VDS>VGS-Vth(即VGD<Vth)时,MOS管进入恒流区,在此工作区内,VDS增大时,ID仅略微增大,因此可将ID看作是受VGS控制的电流源,当MOS管做放大管使用时,工作在此区域
可变电阻区:当VDS<VGS-Vth(即VGD>Vth)时,MOS工作在可变电阻区,在此区域中,可通过改变VGS的大小来改变MOS的导通电阻大小
关于MOS管的夹断:当VGS为一固定值时,若在DS之间加一正向电压,则必将产生漏极电流,并且VDS的增大会使ID增大,沟道沿源漏方向变窄,并在VDS=VGS-Vth(即VGD=Vth)时,出现预夹断,随着VDS继续增大,MOS将承担管子的压降,但漏极电流基本不变,管子进入恒流区。
以上便是教材中对MOS工作区极夹断现象的描述,由此,可以自然而然地提出以下问题:
实际不是,因为当驱动电压小于MOS的导通门限时,MOS管是没有形成导电沟道的。而书中对MOS管的夹断也明确写出MOS管出现夹断现象时,管子工作在恒流区。为更好地区分这两种工作状态,在图2中,我把这一区域称为截止区。
因为Vth是MOS管的导通电压,这意味着在这个电压下,导电沟道刚刚形成。当漏极电压升高到VGD=Vth时,说明导电沟道靠漏极一端的电压降到了导通电压,所以MOS管漏极出现夹断。
总的来说,MOS做开关管使用时,其工作状态在截止区和可变电阻区之间切换,做放大管使用时,工作在饱和区。现如今,大部分的文档对MOS的工作状态的描述都是假设VGS不变,让VDS增加,描述这一过程中MOS管工作状态的变化。但当我重新回头看这么一段描述,浮上我脑海中的最大疑问是:为什么VDS会增加?这是因为在实际的应用场景中,VDS是基本固定不变的,被操纵的一般是驱动电压VGS。而且在作者的工作中,接触的都是工作在开关状态下的MOS,其导通压降很小,很难想象VDS逐步增大的场景,所以下文将从VDS固定不变,VGS压逐渐变大的角度分析MOS的开通过程。
t0~t1:在此区间内,VGS给Cgs充电,但由于Cgs两端电压尚未上升到MOS管的阈值电压,所以MOS管处于截止状态。另外,由于VDD一直存在,所以Cgd的电压应该是从-VGD逐渐上升的(D极电压大于G极)。
t1~t2:t1时刻,Cgs两端电压大于MOS的导通压,此时MOS管开始导通,漏极电流形成,Cgd通过MOS管开始放电,VDS也开始下降。这段时间里,VGD<0<Vth,
t2~t3:t2时刻,VDS两端电压下降到与VGS一致,此时VGD=0,MOS管进入密勒平台,栅极电流开始给Cgd充电,由于VGD开始上升,靠近漏极一侧的导电沟道逐渐变宽,MOS管夹断现象开始消失,导电沟道的扩宽使得VDS迅速下降。到t3时刻,VGD=Vth,MOS管的VGD上升到预夹断电压上,此阶段,MOS管依然工作在饱和区,而在密勒平台,VGS基本不变,因此,ID无变化。
t3~t4:t3时刻后,由于VGD>Vth,MOS管进入可变电阻区,在密勒平台的持续时间里,VDS的压降会降至基本等于饱和导通压降(否则栅极电流应该还是大部分会给Cgd充电,Cgs电压不会抬高),此时VGS不变,VDS下降,MOS管工作在可变电阻区,那么按照MOS管的工作特性曲线,ID应略有下降。
t4~t5:t4时刻,MOS管的密勒平台结束,Cgs继续充电至VGS(sat),ID随着VGS的增大而增大(导电沟道扩宽使导通电阻变小,ID上升,前提是负载足够重),此时MOS管饱和导通,工作在可变电阻区。
后续,若负载继续加重,使漏极电流继续上升,则MOS管的电流将会饱和,MOS管进入饱和区。