MEMS(微机电系统),是指以微型化、系统化的理论为指导,通过半导体制造等微纳加工手段,形成特征尺度为微纳米量级的系统装置。相对于先进的集成电路(IC)制造工艺(遵循摩尔定律),MEMS制造工艺不单纯追求线宽而注重功能特色化,即利用微纳结构或/和敏感材料实现多种传感和执行功能,工艺节点通常从500nm到110nm,衬底材料也不局限硅,还包括玻璃、聚合物、金属等。由MEMS技术构建的产品往往具有体积小、重量轻、功耗低、成本低等优点,已广泛应用于汽车、手机、工业、医疗、国防、航空航天等领域。
MEMS封装案例
MEMS器件的三维机械结构、产品设计和制造技术的多样性,决定了MEMS封装与传统IC封装存在诸多不同且更加复杂。从“消费类应用的低成本封装”到“汽车和航空行业的耐高温和抗恶劣气候的高可靠性封装”;从“裸露在大气环境下的开放式封装”到“需要抽真空的密闭式封装”——各种应用需求对MEMS封装提出了诸多挑战。同时,5G通信、自动驾驶、人工智能、物联网、增强现实(AR)/虚拟现实(VR)等也为MEMS产业带来新机遇,例如以滤波器为代表的射频MEMS迎来5G市场爆发;以微镜为代表的光学MEMS开拓汽车激光雷达商机;以气体传感器为代表的环境MEMS发掘人工智能物联网(AIoT)潜力。
智能手机射频前端模组采用系统级封装(SiP)
OQmented微镜采用独特的“气泡(Bubble)”MEMS晶圆级真空封装
MEMS封装除了包括IC封装的功能部分,即电源分配、信号分配和散热等,还需要考虑应力、气密性、隔离度、特殊的封装环境和引出等问题。例如,光学MEMS器件可能由于冲击、震动或热膨胀等原因产生的封装应力,造成光路对准发生偏移;MEMS陀螺仪的可动部件需要在真空环境中运动以减小摩擦,达到长期可靠工作的目标;红外探测器(微测辐射热计)应该采用真空封装技术,以减小其与周围空气之间的热导,同时还需要高透过率的红外窗口;MEMS麦克风可以根据各种应用需求采用不同开孔位置(例如顶部、底部、侧面)的封装,但同时也会影响器件的声学性能(例如信噪比)。
MEMS麦克风封装示意图
目前,MEMS产业正向多种传感器集成方向前进,形成“惯性、环境、光学”三大类组合传感器,具有三种典型的封装形式:密闭封装(Closed Package)、开放腔体(Open Cavity)、光学窗口(Open-eyed)。相比分立器件,组合传感器具有一些优势:(1)多种传感器可以共享ASIC芯片,共用封装外壳,能够降低产品成本;(2)如果两种传感器工艺相近,可以做成单芯片,能够极大减小传感器尺寸;(3)多种传感器数据经过滤波、融合,以及人工智能等算法处理,可以提高产品附加值,使得竞争对手难以模仿。
目前,MEMS产业正向多种传感器集成方向前进,形成“惯性、环境、光学”三大类组合传感器,具有三种典型的封装形式:密闭封装(Closed Package)、开放腔体(Open Cavity)、光学窗口(Open-eyed)。相比分立器件,组合传感器具有一些优势:(1)多种传感器可以共享ASIC芯片,共用封装外壳,能够降低产品成本;(2)如果两种传感器工艺相近,可以做成单芯片,能够极大减小传感器尺寸;(3)多种传感器数据经过滤波、融合,以及人工智能等算法处理,可以提高产品附加值,使得竞争对手难以模仿。
三大类组合传感器及封装形式
来源于网络