例如,你不能说神经网络总是比决策树好,反之亦然。有很多因素在起作用,例如数据集的大小和结构。
因此,你应该针对具体问题尝试多种不同算法,并留出一个数据「测试集」来评估性能、选出优胜者。
当然,你尝试的算法必须适合你的问题,也就是选择正确的机器学习任务。打个比方,如果你需要打扫房子,你可能会用吸尘器、扫帚或拖把,但是你不会拿出铲子开始挖土。
大原则
不过也有一个普遍原则,即所有监督机器学习算法预测建模的基础。
机器学习算法被描述为学习一个目标函数 f,该函数将输入变量 X 最好地映射到输出变量 Y:Y = f(X)
这是一个普遍的学习任务,我们可以根据输入变量 X 的新样本对 Y 进行预测。我们不知道函数 f 的样子或形式。如果我们知道的话,我们将会直接使用它,不需要用机器学习算法从数据中学习。
最常见的机器学习算法是学习映射 Y = f(X) 来预测新 X 的 Y。这叫做预测建模或预测分析,我们的目标是尽可能作出最准确的预测。
对于想了解机器学习基础知识的新手,本文将概述数据科学家使用的 top 10 机器学习算法。
1. 线性回归
线性回归可能是统计学和机器学习中最知名和最易理解的算法之一。
预测建模主要关注最小化模型误差或者尽可能作出最准确的预测,以可解释性为代价。我们将借用、重用包括统计学在内的很多不同领域的算法,并将其用于这些目的。
线性回归的表示是一个方程,它通过找到输入变量的特定权重(称为系数 B),来描述一条最适合表示输入变量 x 与输出变量 y 关系的直线。

我们将根据输入 x 预测 y,线性回归学习算法的目标是找到系数 B0 和 B1 的值。
可以使用不同的技术从数据中学习线性回归模型,例如用于普通最小二乘法和梯度下降优化的线性代数解。
线性回归已经存在了 200 多年,并得到了广泛研究。使用这种技术的一些经验是尽可能去除非常相似(相关)的变量,并去除噪音。这是一种快速、简单的技术,可以首先尝试一下。
2. Logistic 回归
Logistic 回归是机器学习从统计学中借鉴的另一种技术。它是解决二分类问题的首选方法。
Logistic 回归与线性回归相似,目标都是找到每个输入变量的权重,即系数值。与线性回归不同的是,Logistic 回归对输出的预测使用被称为 logistic 函数的非线性函数进行变换。
logistic 函数看起来像一个大的 S,并且可以将任何值转换到 0 到 1 的区间内。这非常实用,因为我们可以规定 logistic 函数的输出值是 0 和 1(例如,输入小于 0.5 则输出为 1)并预测类别值。

像线性回归一样,Logistic 回归在删除与输出变量无关的属性以及非常相似(相关)的属性时效果更好。它是一个快速的学习模型,并且对于二分类问题非常有效。
3. 线性判别分析(LDA)
Logistic 回归是一种分类算法,传统上,它仅限于只有两类的分类问题。如果你有两个以上的类别,那么线性判别分析是首选的线性分类技术。
LDA 的表示非常简单直接。它由数据的统计属性构成,对每个类别进行计算。单个输入变量的 LDA 包括:
• 每个类别的平均值;
• 所有类别的方差。

4. 分类与回归树
决策树是预测建模机器学习的一种重要算法。
决策树模型的表示是一个二叉树。这是算法和数据结构中的二叉树,没什么特别的。每个节点代表一个单独的输入变量 x 和该变量上的一个分割点(假设变量是数字)。

决策树学习速度和预测速度都很快。它们还可以解决大量问题,并且不需要对数据做特别准备。
5. 朴素贝叶斯
朴素贝叶斯是一个简单但是很强大的预测建模算法。
该模型由两种概率组成,这两种概率都可以直接从训练数据中计算出来:1)每个类别的概率;2)给定每个 x 的值,每个类别的条件概率。一旦计算出来,概率模型可用于使用贝叶斯定理对新数据进行预测。当你的数据是实值时,通常假设一个高斯分布(钟形曲线),这样你可以简单的估计这些概率。

6. K 近邻算法
KNN 算法非常简单且有效。KNN 的模型表示是整个训练数据集。是不是很简单?
KNN 算法在整个训练集中搜索 K 个最相似实例(近邻)并汇总这 K 个实例的输出变量,以预测新数据点。对于回归问题,这可能是平均输出变量,对于分类问题,这可能是众数(或最常见的)类别值。
诀窍在于如何确定数据实例间的相似性。如果属性的度量单位相同(例如都是用英寸表示),那么最简单的技术是使用欧几里得距离,你可以根据每个输入变量之间的差值直接计算出来其数值。

距离或紧密性的概念可能在非常高的维度(很多输入变量)中会瓦解,这对算法在你的问题上的性能产生负面影响。这被称为维数灾难。因此你最好只使用那些与预测输出变量最相关的输入变量。
7. 学习向量量化
K 近邻算法的一个缺点是你需要遍历整个训练数据集。学习向量量化算法(简称 LVQ)是一种人工神经网络算法,它允许你选择训练实例的数量,并精确地学习这些实例应该是什么样的。

如果你发现 KNN 在你的数据集上达到很好的结果,请尝试用 LVQ 减少存储整个训练数据集的内存要求。
8. 支持向量机(SVM)
支持向量机可能是最受欢迎和最广泛讨论的机器学习算法之一。
超平面是分割输入变量空间的一条线。在 SVM 中,选择一条可以最好地根据输入变量类别(类别 0 或类别 1)对输入变量空间进行分割的超平面。在二维中,你可以将其视为一条线,我们假设所有的输入点都可以被这条线完全的分开。SVM 学习算法找到了可以让超平面对类别进行最佳分割的系数。

SVM 可能是最强大的立即可用的分类器之一,值得一试。
9. Bagging 和随机森林
随机森林是最流行和最强大的机器学习算法之一。它是 Bootstrap Aggregation(又称 bagging)集成机器学习算法的一种。
bootstrap 是从数据样本中估算数量的一种强大的统计方法。例如平均数。你从数据中抽取大量样本,计算平均值,然后平均所有的平均值以便更好的估计真实的平均值。
bagging 使用相同的方法,但是它估计整个统计模型,最常见的是决策树。在训练数据中抽取多个样本,然后对每个数据样本建模。当你需要对新数据进行预测时,每个模型都进行预测,并将所有的预测值平均以便更好的估计真实的输出值。

因此,针对每个数据样本创建的模型将会与其他方式得到的有所不同,不过虽然方法独特且不同,它们仍然是准确的。结合它们的预测可以更好的估计真实的输出值。
如果你用方差较高的算法(如决策树)得到了很好的结果,那么通常可以通过 bagging 该算法来获得更好的结果。
10. Boosting 和 AdaBoost
Boosting 是一种集成技术,它试图集成一些弱分类器来创建一个强分类器。这通过从训练数据中构建一个模型,然后创建第二个模型来尝试纠正第一个模型的错误来完成。一直添加模型直到能够完美预测训练集,或添加的模型数量已经达到最大数量。
AdaBoost 是第一个为二分类开发的真正成功的 boosting 算法。这是理解 boosting 的最佳起点。现代 boosting 方法建立在 AdaBoost 之上,最显著的是随机梯度提升。

因为在纠正算法错误上投入了太多注意力,所以具备已删除异常值的干净数据非常重要。
总结
初学者在面对各种机器学习算法时经常问:「我应该用哪个算法?」这个问题的答案取决于很多因素,包括:
(1)数据的大小、质量和特性;
(2)可用的计算时间;
(3)任务的紧迫性;
(4)你想用这些数据做什么。
即使是经验丰富的数据科学家在尝试不同的算法之前,也无法分辨哪种算法会表现最好。虽然还有很多其他的机器学习算法,但本篇文章中讨论的是最受欢迎的算法。如果你是机器学习的新手,这将是一个很好的学习起点。
转自:微信号 - 七月在线实验室