我国心血管疾病(CVD)的患病率和死亡率都处于上升阶段,疾病负担日益加重。心电图是一种临床常用的筛查和诊断心律失常和CVD的方法。常规心电图检查获得的信息较少,极有可能漏诊。24 h动态心电图虽能更好地反映患者的心电图特点,但也使心电医技人员的工作量明显增加。
随着便携式心电可穿戴设备的快速发展,新增的海量心电图数据的判别和诊断已经无法仅靠人工来完成。近年来人工智能和机器学习(ML),特别是深度学习,在辅助诊断、医学影像处理等领域应用迅速发展,在心电图自动诊断方面也取得了诸多卓有成效的进展。
博士等对31篇文献进行了综述,总结了深度学习应用于心电图相关的五个领域的研究,包括心律失常、心肌病、心肌缺血、瓣膜病、高钾血症和其他非心血管疾病,并对其局限性和未来研究的方向进行了讨论。
转自:https://www.robot-china.com/news/202110/22/67870.html