编者按:日前,德勤发布了一份报告,谈及了汽车和AI带来的半导体机会。今日我们给大家带来人工智能对半导体的影响分析。
所谓人工智能,从框架上看大致可分为三个层面。基础设施层面包括核心的人工智能芯片和大数据,这是技术层面的传感和认知计算能力的基础。应用层面处于最顶层,提供无人驾驶、智能机器人、智慧安防和虚拟助手等服务。人工智能芯片是人工智能技术链条的核心,对人工智能算法处理尤其是深度神经网络至关重要。
“深度”指神经网络模型中的层级和节点数量。近年来,层级之间的复杂程度以及节点数量呈现指数级增长,这对计算力提出了极大的挑战。传统的中央处理器虽然在处理一般工作负荷——尤其是基于一定规则的工作——方面的性能较为突出, 但现在已经难以满足人工智能算法的并行计算要求。
人工智能芯片在人工智能不同层面的角色
解决并行计算问题主要有两种方法:第一,在现有的计算架构上添加专用加速器;第二,完全重新开发,创造模拟人脑神经网络的全新架构。第二种方法仍处于初期开发阶段,不适合商业应用。因此,目前主要采用的方法是添加人工智能加速器。多种类型的人工智能芯片均可以实现加速,主流加速器包括图形处理器、现场可编程门阵列,以及专用集成电路, 这包括张量处理器、神经网络处理器、神经网络处理器、矢量处理器和大脑处理器等变体。每种人工智能芯片都有其自身的优势和劣势。于处理执行图形密集型任务(如游戏)的图形处理器以并行计算为设计理念,拥有出色的性能,适用于需要进行大量并行计算的深度学习人工智能算法。这个新功能使图形处理器成为人工智能硬件的绝佳选择。目前,图形处理器广泛应用于云和数据中心进行人工智能训练,同时也应用于汽车和安防领域。图形处理器是目前应用最广、灵活性最高的人工智能芯片。
现场可编程门阵列是一种可编程阵列,适用于希望根据自身需求重新编程的客户。现场可编程门阵列的特点是开发周期短(相较于专用集成电路)、功耗低(相较于图形处理器)。然而,灵活性高的特点导致其成本相对较高。现场可编程门阵列可同时兼顾效率和灵活性,尤其是在未决定使用何种人工智能算法的情况下。这样,供应商能够根据不同应用优化定制芯片,同时避免因采用专用集成电路方法而导致的成本和技术过时等困境。
另一方面,专用集成电路人工智能芯片拥有人工智能应用的专用架构。基于专用集成电路的人工智能芯片具有多种变体,包括张量处理器、神经网络处理器、矢量处理器和大脑处理器等,用于处理各种不同的计算密集型、基于规则的工作,具有效率高、性能出众以及中央处理器所具有的灵活性等特点。相较于图形处理器和现场可编程门阵列,专用集成电路人工智能芯片通常效率更高、尺寸更小、功耗更低。然而,专用集成电路芯片的开发周期更长、灵活性更低,导致其商业化应用进展缓慢。
深度学习有两种完全不同的人工智能部署方式: 训练和推理。人工智能基于大数据“训练”神经网络模型,利用训练数据集获取新训练好的模型。这些新训练好的模型随后便被赋予新的能力,根据新的数据集进行“推理”得出结论。
因为需要将庞大的数据集应用到神经网络模型中,因此训练阶段需要大量的计算能力。这就要求具有先进并行计算能力的高端服务器能够处理大量高度并行的各类数据集。因此,这一阶段的工作通常利用云端硬件设备完成。而推理阶段既可以在云端完成也可以借助边缘设备(产品) 进行。与训练芯片相比,推理芯片需要更全面地考虑功耗、延时和成本等因素。
深度学习的两大阶段
人工智能芯片创新刚刚起步,供应商在芯片加速方面采取的办法各不相同。例如, 谷歌选择了专用集成电路的路线,而微软则已证明采用现场可编程门阵列亦可获相当抑或更好的结果。同时,赛灵思、百度和亚马逊均在努力减少应用专用集成电路的传统障碍。人工智能芯片将实现爆发式增长
到2022年,人工智能芯片市场在整个人 工智能市场中的占比预计超过12%,复合年均增长率达到54%。美洲地区将引领全球人工智能市场,欧洲、中东及非洲地区和亚太地区紧随其后。2022年,美洲地区将占据主导市场地位。全球人工智能与人工智能芯片市场
根据部署方式,人工智能芯片市场可分为基于云技术和网络边缘两个细分市场。人工智能的两种部署方式
云端是人工智能芯片最大的细分市场,原因在于数据中心为提升效率,降低运营 成本并改善基础设施管理,对人工智能芯片的采用持续增长。特别需要指出的是, 人工智能训练市场的规模将达到约170亿美元,其中云端推理芯片市场的规模将达到70亿美元。从产品类别来看,图形处理器已经成为人工智能芯片的主流趋势,拥有超过30%的市场份额,高于其他所有产品类别。网络边缘人工智能芯片方兴未艾
人工智能芯片不仅可以部署在云端,还可以应用于多种网络边缘设备,如智能手 机、无人驾驶汽车以及监控摄像头。应用于网络边缘设备的人工智能芯片多为推理芯片,且专业程度越来越高。到2022 年,人工智能推理芯片市场的规模预计 将增至20亿美元,复合年均增长率达到40%。(1) 人工智能芯片推升智能手机平均售价
产品成本的不断上涨将使人工智能芯片供应商获益。例如,苹果公司的A11芯片成本上升到了27.50美元。人工智能芯片的成本增长将使智能手机价格上涨,让智能手机制造商获得更多收入。人工智能芯片的应用亦已从高端机型扩展到中端机型,这亦有可能为智能手机供应商带来更多收入。
智能手机的推理人工智能芯片现已成为智能手机制造商(如苹果、三星和华为)、独立芯片供应商(如高通与联发科)以及知识产权授权供应商(如ARM和新思科技)三方竞争的焦点。智能手机制造商的人工智能芯片通常均针对自身手机产品进行了优化以提升性能和用户体验。然而,独立芯片供应商所生产的芯片的技术参数可能会优于市场中其他竞争对手的产品。
(2) 无人驾驶是人工智能芯片的理想应用领域
无人驾驶不仅仅是一个复杂的人工智能应用场景,而且还具有重要意义。无人驾驶预计将有力推动人工智能推理芯片应用,使人工智能推理芯片市场的规模增至50亿美元,复合年均增长率达到40%。
传感、建模与决策是无人驾驶的三大必备流程,每一个流程都涉及推理芯片应用。无论是环境传感或障碍物躲避,无人驾驶对人工智能芯片的计算力都提出了很 高的要求。
由于存在延迟等限制,在理想情况下,无人驾驶的计算应该在网络边缘而非云端完成,因为无人驾驶要求准实时决策。以丰田无人驾驶汽车为例,L5无人驾驶需要每秒12万亿次的运算能力,但目前大多数芯片只支持每秒2-3万亿次的运算。显然,人工智能芯片迫切需要迁移至网络边缘,而非在云端开展主要计算工作。
整车厂正在对供应商提供的芯片进行测试,以找到最合适的候选芯片。大型整车厂更愿意自行建设无人驾驶平台并单独采购人工智能芯片,但多数历史较短的整车厂却更倾向于购买完善的无人驾驶平台。随着时间的推移,能够从当地加工中获益的人工智能应用也许会越来越多,如苹果公司的刷脸认证方式Face ID。
(3) 智能监控系统需求高涨
在人工智能技术的支持下,监控系统的智能程度不断升级。过去十年内,监控系统行业经历了三个重要的转型阶段。第一,“高分辨率”阶段,即系统能够录制超清视频。第二,“联网”阶段,即系统实现联网和互联。
人工智能时代的到来可以被视为第三次转型浪潮。人工智能推理芯片现在可以应用于边缘网络摄像机,以实时处理视频数据。由于网络边缘每天产生大量数据, 此类应用可以节省云端存储空间,提升监控系统性能。
中国已成为人工智能芯片的热土
在中国,人工智能芯片融资活动一直非常活跃,相关并购活动也日益增多。其中一个典型的案例是国际巨头赛灵思对在机器学习、深度压缩、网络剪枝和神经网络系统级优化领域拥有领先技术初创企业深鉴科技的收购。以阿里巴巴、百度和华为为首的领先科技公司也逐步进入这一竞争领域。值得注意的是,华为已经掀起了智能手机领域的人工智能芯片竞争。此外,一些比特币矿机设备制造商也开始进军人工智能优化领域。中国的人工智能企业通常能够快速识别可行的人工智能商业应用,尤其是商业模型创新和快速实施。然而,中国企业普遍缺少开发原创人工智能模型的能力, 国内的人工智能研究大多关注调整和完善现有的模型,而非创造原创、系统性的人工智能框架。此外,与美国等其他国家相比,中国的人工智能相关培训亦非常有限。
(1)把握人工智能发展趋势
毫无疑问,人工智能的崛起为半导体设备行业尤其是人工智能芯片带来了新的机遇。已经或将要进入人工智能系统领域的半导体企业应紧跟以下主要趋势,保持市场竞争优势
(2)专业化是人工智能芯片的关键
未来,人工智能芯片企业不应只满足于充当硬件供应商,而应该深入了解顾客需求,提供合适的产品。如今,顾客不仅仅需要具备一定人工智能功能的通用型芯片;他们希望人工智能芯片能够以合理的成本满足其商业需求,人工智能芯片企业需要权衡考虑功耗、性能和成本三大因素。计算密度(即每消耗一单位能量所能提供的计算能力)将成为人工智能芯片供应商的核心竞争力。
(3)从云端迁移至边缘
网络边缘的机遇不断增多,很多大型企业正在从云端转移至边缘,以提供从训练到推理工作的全方位人工智能解决方案。值得注意的是,现在大多数人工智能系统均以冯诺依曼体系结构为基础,处理和存储分别单独进行,导致人工智能极易耗电,神经网络被限制于云端。企业正在努力构建一种新的架构,使处理器和存储器实现更紧密的 耦合,从而提高设备性能和能源效率。方法是在存储器中增添新的功能,使设备在不更换处理器的情况下变得更加智能。半导体行业应该尝试这类设计,以推动人工智能顺利从云端迁移至边缘。
(4)选择合适的半导体加工技术
根据摩尔定律,中央处理器需要应用最先进的工艺技术,而与此不同而是,人工智能采用的是并行处理方式,因而人工智能芯片 并不一定需要采用最先进的工艺技术。例如,40纳米级和28纳米级加工技术已足以提供每秒1万亿次运算的计算力。此外,上一代加工工艺还可以利用成熟的工具组件和基础模块。许多大型代工厂均可根据性能和功耗提供从28纳米级到7 纳米级等多种先进的工艺技术。半导体供应商应该根据计算力、功耗和形状参数等标准选择合适的半导体工艺技术。
(5)软件工具支持不可或缺
半导体企业对标准的开源软件框架的支持程度是赢得人工智能竞争的关键,对于试图追赶半导体芯片已经支持几乎所有深度学习软件和工具的领先企业的挑战者尤其如此。要在市场竞争中存活下来,半导体供应商至少能够支持主要的开源软件框架,如TensorFlow、Caffe2、Theano、CNTK、MXNet 和Torch等,同时还需为开发者提供辅助应用开发的工具。未来,半导体供应商需要投资于软件,并与软件开发商合作获取其人工智能设备架构。用于处理神经网络的软件框架数量逐渐增多,且未来几年内将陆续开发和推出更多软件框架,因此新加入者仍有较大发展空间。
(6)把握人工智能芯片之外的机遇
人工智能处理能力的实现并不仅仅依靠人工智能芯片。在人工智能的发展过程中,存储器也是一个十分重要的部件,因为高吞吐量的并行处理会给存储器系统中的数据带宽带来多重压力。对人工智能系统存储器的巨大需求将为存储器供应商创造机遇。此外,随着人工智能系统的扩张,各子系统及设备之间的互联性能可能面临发展瓶颈。因此,半导体供应商应把握机遇,创造出实现高速互联的设备,满足系统之间的大量数据流动需求。此外,虽然人工智能芯片可内置多个处理器,使并行计算能力达到最大化,但如此便导致芯片尺寸变大。这对可能需要定制冷却解决方案的热力和高压电源管理提出了巨大的挑战。封装供应商可以借此机会开发 更薄、散热更少的产品,为客户打造性价比更高的解决方案。