磁性元件对功率变换器的重要性
磁性元件的设计考虑与相应模型
磁性元件模型参数对电路性能的影响
变压器的涡流(场)特性-损耗效应
变压器的磁(场)特性-感性效应
变压器的电(场)特性-容性效应

功率变换器中的功率磁性元件
614d5ffa59044bde85ad602617a0b788.jpeg
●作用:起磁能的传递和储能作用,必不可少的元件
●特点:体积大,重量大,损耗大,对电路性能影响大
●挑战:对变换器功率密度影响很大,成为发展瓶颈
功率变换器技术与磁性元件
●拓扑: 正激,反激,推挽,全桥移相,LLC,等,磁集成,磁耦合;
●控制: 控制芯片+控制电路,变压器环节+滤波器环节;
●封装: PCB绕组,绕组+同步MOS, 超薄磁元件;
●元件: 有源器件,电容,磁性元件(设计+定制);
●仿真: 电路模型,器件模型(IC, MOS, Diode, Cap, 磁性元件);
●电磁兼容: 布板,EMI滤波器, 分布参数, 近场耦合;
●制造: 自动化, 磁性元件(人工制作)
●品质: 磁性元件测试,失效分析。
磁性元件的模型

变压器模型

电感器模型

反激变换器实际工作波形

DCM下波形与变压器参数

CCM下波形与变压器参数

电感分布电容EPC对损耗的影响

变压器中的磁场/涡流场分布特性

铜箔导体的涡流损耗特性

降低变压器的绕组损耗--基本结构考虑

不同绕组结构的磁场和电流密度分布

绕组的分布电容EPC

电感绕组分布电容的形成机理

电感绕组不同绕法对分布电容的影响

分布电容计算的基本方法

线圈分布电容的近似理论计算

多层线圈的分布电容

带屏蔽层的绕组分布电容

分段绕组的分布电容特性

变压器内部的电荷分布情况与分布电容

有屏蔽层变压器内部的电荷分布情况

变压器副边电荷的抵消设计

结论
●磁性元件技术对功率变换器是十分重要的;
●磁性元件的分布参数对电路性能(效率,功率密度和可靠性)具有重要的影响;
●从磁性元件内部的磁场、电场和涡流场层次,可以更深入完整地理解磁性元件的各项参数;